首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis of a new series of 5‐oxy‐pyrido[2,3‐b]quinoxaline‐9‐carboxamides 4a‐i and N1,N2‐Bis(5‐oxy‐pyrido[2,3‐b]quinoxaline‐9‐benzoyl)ethylenediamine ( 5 ) is reported starting from 2‐chloro‐3‐nitropyri‐dine. Fundamental steps of the synthetic pathway are i) preparation of 2‐(3‐nitro‐pyridin‐2‐ylamino)benzoic acid ( 1 ) via copper‐catalyzed condensation of 2‐chloro‐3‐nitropyridine with o‐anthranilic acid, ii) intramolecular cyclization of the acid 1 to 5‐oxy‐pyrido[2,3‐b]quinoxaline‐9‐carboxylic acid ( 2b ) upon treatment with concentrated sulfuric acid and oleum and iii) conversion of the acid 2 to the desired amides 4a‐i and 5 . Compounds 4a‐i and 5 are oxygenated azaanalogs of phenazines, a wellknown series of intercalators with cytotoxic activity.  相似文献   

2.
This paper describes a convenient and efficient synthesis of new fused tricyclic diazepino[3,2,1‐ij]quinolines and substituted pyrido[1,2,3‐de]quinoxalines. o‐Phenylenediamines are transformed in the tricycle nucleus in only a few‐step synthetic sequence to produce ethyl 2,8‐dioxo‐1,2,3,4‐tetrahydro‐8H [1,4]diazepino[3,2,1‐ij]quinoline‐7‐carboxylate, ethyl 8‐oxo‐1,2,3,4‐tetrahydro‐8H‐[1,4]diazepino[3,2,1‐ij]quinoline‐7‐carboxylate and ethyl 2,7‐dioxo‐2,3‐dihydro‐1H,7H‐pyrido[1,2,3‐de]quinoxaline‐6‐carboxylate. The method is economical and simple to perform.  相似文献   

3.
An unexpected approach to the preparation of quinoxaline and pyrido[2,3‐b]pyrazine derivatives 5 is described. The reaction between 1H‐indole‐2,3‐diones 1 , 1‐phenyl‐2‐(triphenylphosphoranylidene)ethanone ( 2 ), and benzene‐1,2‐ or pyridine‐2,3‐diamines 3 proceeds in MeOH under reflux in good to excellent yields (Scheme 1 and Table). No co‐catalyst or activator is required for this multi‐component reaction (MCR), and the reaction is, from an experimental point of view, simple to perform. The structures of 5, 5′ , and 6 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and were confirmed by comparison with reference compounds. A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

4.
Two D–π–A copolymers, based on the benzo[1,2‐b:4,5‐b′]‐dithiophene (BDT) as a donor unit and benzo‐quinoxaline (BQ) or pyrido‐quinoxaline (PQ) analog as an acceptor (PBDT‐TBQ and PBDT‐TPQ), were designed and synthesized as a p‐type material for bulk heterojunction (BHJ) photovoltaic cells. When compared with the PBDT‐TBQ polymer, PBDT‐TPQ exhibits stronger intramolecular charge transfer, showing a broad absorption coverage at the red region and narrower optical bandgap of 1.69 eV with a relatively low‐lying HOMO energy level at ?5.24 eV. The experimental data show that the exciton dissociation efficiency of PBDT‐TPQ:PC71BM blend is better than that in the PBDT‐TBQ:PC71BM blend, which can explain that the IPCE spectra of the PBDT‐TPQ‐based solar cell were higher than that of the PBDT‐TBQ‐based solar cell. The maximum efficiency of PBDT‐TPQ‐based device reaches 4.40% which is much higher than 2.45% of PBDT‐TBQ, indicating that PQ unit is a promising electron‐acceptor moiety for BHJ solar cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1822–1833  相似文献   

5.
Since deregulation of the tyrosine‐kinase receptor c‐Met is implicated in several human cancers and is an attractive target for small‐molecule‐drug discovery, we report herein the synthesis of 2,3,4,5‐tetrahydro‐8‐[1‐(quinolin‐6‐ylmethyl)‐1H‐1,2,3‐triazolo[4,5‐b]pyrazin‐6‐yl]‐1H‐pyrido[4,3‐b]indoles 4a – 4c and 2,3,4,5‐tetrahydro‐8‐[3‐(quinolin‐6‐ylmethyl)‐1,2,4‐triazolo[4,3‐b]pyridazin‐6‐yl]‐1H‐pyrido[4,3‐b]indoles 5a – 5c . These indole derivatives demonstrated inhibition of c‐Met kinase activity. Concurrently, five key intermediates were synthesized. These compounds could be prepared in good yields.  相似文献   

6.
He‐Jun Lu  Jin‐Tao Liu 《中国化学》2001,19(12):1268-1272
In the presence of N, N′‐dicyclohexylcarbodiimide, 2‐aminopyridine and its derivatives (2) condensed with 2, 2‐di‐hydropolyfluoroalkanoic adds (1) to give the corresponding amides. Subsequent intramolecular Micheal addition‐elimination reactions of the fluorine‐containing amides under basic conditions gave 4‐fluoroalkyl‐2H‐pyrido[1,2‐a]pyrimidin‐2‐ones (3) in good yields.  相似文献   

7.
The cyclization of 1,5‐bis[(trimethylsilyl)oxy]penta‐1,4‐dienes with quinoxalines and chloroformates afforded 2,3,3a,9a‐tetrahydro‐1H‐cyclopenta[b]quinoxaline‐1,3,4,9‐tetracarboxylate.  相似文献   

8.
A sequential one‐pot four‐component reaction for the efficient synthesis of novel 2′‐aminospiro[11H‐indeno[1,2‐b]quinoxaline‐11,4′‐[4H]pyran] derivatives 5 in the presence of AcONH4 as a neutral, inexpensive, and dually activating catalyst is described (Scheme 1). The syntheses are achieved by reacting ninhydrin ( 1 ) with benzene‐1,2‐diamines 2 to give indenoquinoxalines, which are trapped in situ by malono derivatives 2 and various α‐methylenecarbonyl compounds 4 through cyclization, providing the multifunctionalized 2′‐aminospiro[11H‐indeno[1,2‐b]quinoxaline‐11,4′‐[4H]pyran] analogs 5 . This chemistry provides an efficient and promising synthetic way of proceeding for the diversity‐oriented construction of the spiro[indenoquinoxalino‐pyran] skeleton.  相似文献   

9.
Pyridopyrimidine reacted with aromatic aldehydes afforded the arylhydrazone 2a,b which could be cyclized into the pyrido[2,3‐d][1,2,4]triazolo[4,3‐a]pyrimidine 3a,b , with formic acid, and carbon disulphide to give pyrido[2,3‐d][1,2,4]traizolo[4,3‐a]pyrimidine 4, 5. Reaction of 1 with nitrous acid afforded tetrazolo[1,5‐a]pyrido[2,3‐d]pyrimidine 6 , which was reduced by zinc dust to give 2‐amino‐pyrido‐[2,3‐d]pyrimidine 7. Finally the reaction of 2‐hydrazino 1 with D‐xylose or D‐glucose afforded the acyclic N‐nucleoside 8, 11 which were converted into tetra/penta O‐acetate acyclic C‐nucleoside 9, 12 in acetic anhydride/pyridine. De‐acetylation of compounds 9, 12 afforded C‐nucleosides 10, 13.  相似文献   

10.
A series of new 2‐substituted 3‐(4‐chlorophenyl)‐5,8,9‐trimethylthieno[3′,2′: 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐ones 8 were synthesized via an aza‐Wittig reaction. Phosphoranylideneamino derivatives 6a or 6b reacted with 4‐chlorophenyl isocyanate to give carbodiimide derivatives 7a or 7b , respectively, which were further treated with amines or phenols to give compounds 8 in the presence of a catalytic amount of EtONa or K2CO3. The structure of 2‐(4‐chlorophenoxy)‐3‐(4‐chlorophenyl)‐5,8,9‐trimethylthieno[3′,2′: 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐one ( 8j ) was comfirmed by X‐ray analysis.  相似文献   

11.
The electrochemical properties of 24 1,4‐dioxidoquinoxalin‐2‐yl ketone derivatives with varying degrees of anti‐Chagas activity were investigated in the aprotic solvent dimethylformamide (DMF) by cyclic voltammetry and first‐derivative cyclic voltammetry. For this group of compounds, the first reduction in DMF was either reversible or quasireversible and consistent with reduction of the N‐oxide functionality to form the radical anion. The second reduction process for these compounds was irreversible under the conditions used. The reduction potentials correlated well with molecular structure. Substitution in the 3‐, 6‐, and 7‐ positions of the quinoxaline ring by electron‐withdrawing substituents directly affected the ease of reduction and improved the biological activities of these compounds, whereas substitution by electron‐donating groups had the opposite effect. The electrochemical results, when combined with previous work on their mechanism of action against Chagas disease and their measured anti‐Chagas activities, indicated that the quinoxaline 1,4‐dioxide system serves as a promising starting point for chemical modifications aimed at improving the T. cruzi activity via a possible bioreduction mechanism.  相似文献   

12.
Cyclocondensation of 2,3,3‐trimefhyl‐3H‐indoles 2 with malonates 3 gives 8‐hydroxy‐10,10‐dimefhyl‐10H‐pyrido[1,2‐a]indol‐6‐ones 4 , which were halogenated in position 7, 8 and 9 with sulfuryl chloride, bromine or phosphoroxychloride to give the corresponding halo‐10,10‐dimethyl‐10H‐pyrido[1,2‐a]indoles 5, 6, 7 and 8 . Amination affords the 8‐amino‐10,10‐dimethyl‐10H‐pyrido[1,2‐a]indol‐6‐one 9 . Nitration gives either the 10,10‐dimethyl‐7‐nitro‐10H‐pyrido[1,2‐a]indoles 10 or 10,10‐dimethyl‐7‐hydroxy‐10H‐pyrido[1,2‐a]indoles 11 , depending on the conditions.  相似文献   

13.
A series of novel muti‐substituted pyrido[4,3‐d]pyrimidin‐4‐one derivatives 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , 5l were designed and synthesized by the muti‐step reaction. N,S‐acetal 1 reacted with acetyl acetamide in the presence of zinc nitrate to obtain muti‐substituted pyridine 2 , which reacted with triethyl orthoformate to give 8‐cyano‐5‐methyl‐7‐methylthio‐pyrido[4,3‐d]pyrimidin‐4‐one 3 ; the target compounds 5 were obtained in good yields by the oxidation of 3 with H2O2 in a catalytic amount of sodium tungstate then by the substitution with various substituted phenols. Their structures were confirmed by IR, 1H NMR, EI‐MS, and elemental analyses. The preliminary bioassay indicated that some of them displayed moderate herbicidal activity against dicotyledonous weed Brassica campestris L. at the concentration of 100 mg/L. For example, compounds 5a , 5f , and 5g possessed 76.0%, 62.7%, and 60.2% inhibition against B. campestris at the concentration of 100 mg/L. Moreover, 5a exhibited 58.2% inhibition against B. campestris at the concentration of 10 mg/L.  相似文献   

14.
A highly ef?cient synthesis of novel pyrido[2,3‐d]pyrimidin‐4‐ols was developed via an iodine‐catalyzed tandem oxidative cyclization under focused microwave irradiation. Pyrido[2,3‐d]pyrimidin‐4‐ols were obtained from easily available 2‐amino‐4‐aryl‐6‐arylnicotinamides and benzylic amines with good to excellent yields.  相似文献   

15.
用聚乙二醇作为可溶性聚合物载体和相转移催化剂高效简单的合成了1, 2, 3, 4-四氢吡啶并[3, 2-d]嘧啶类化合物。该合成路线为聚乙二醇与2, 3-吡啶二酸酐反应生成聚乙二醇支载的单酯1,接着1被转化成相应的聚乙二醇支载的酰基叠氮2,2经Curtius重排,与胺加成并同时关环给出目标产物,其总产率为84%-88%。  相似文献   

16.
The reaction of 6‐chloro‐2‐hydrazinoquinoxaline 4‐oxide 1b with acetylacetone or benzoylacetone gave 6‐chloro‐2‐(3,5‐dimethylpyrazol‐i‐yl)quinoxaline 4‐oxide 5a or 6‐chloro‐2‐(3‐methyl‐5‐phenylpyrazol‐1‐yl)quinoxaline 4‐oxide 5b , respXectively. Compound 5a or 5b was converted into the pyrrolo[1,5‐a]quinoxaline 6a or 6b , triazolo[4,3‐a]quinoxaline 9a or 9b , and tetrazolo[1,5‐a]quinoxaline 10.  相似文献   

17.
An efficient synthesis of (3S)‐1,1′,2,2′,3′,4′,6′,7′‐octahydro‐9′‐nitro‐2,6′‐dioxospiro[3H‐indole‐3,8′‐[8H]pyrido[1,2‐a]pyrimidine]‐7′‐carbonitrile is achieved via a three‐component reaction of isatin, ethyl cyanoacetate, and 1,2,3,4,5,6‐hexahydro‐2‐(nitromethylidene)pyrimidine. The present method does not involve any hazardous organic solvents or catalysts. Also the synthesis of ethyl 6′‐amino‐1,1′,2,2′,3′,4′‐hexahydro‐9′‐nitro‐2‐oxospiro[3H‐indole‐3,8′‐[8H]pyrido[1,2‐a]pyrimidine]‐7′‐carboxylates in high yields, at reflux, using a catalytic amount of piperidine, is described. The structures were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS data) and by elemental analyses. A plausible mechanism for this reaction is proposed (Scheme 2).  相似文献   

18.
A series of pyrido[2,3‐d]pyrimidine‐2‐thione derivatives ( 5a‐c ) were synthesized by the one‐pot reaction of the appropriate aldehyde, malononitrile and 6‐aminothiouracil ( 1 ) in dimethyl‐formamide. The same compounds were also synthesized by the reaction of arylidine malononitrile ( 4 ) with 6‐aminothiouracil ( 1 ). Moreover, the chemical behaviour of the produced pyrimidines towards different reagents was studied.  相似文献   

19.
The reaction of the quinoxaline N‐oxides 7a,b with diethyl ethoxymethylenemalonate gave the 1‐methylpyridazino[3,4‐b]quinoxaline‐4,4‐dicarboxylates 8a,b , whose reaction with N‐bromosuccinimide or N‐chlorosuccinimide afforded the 3‐halogeno‐1‐methylpyridazino[3,4‐b]quinoxaline‐4,4‐dicarboxylates 9a‐d. The reaction of compounds 9a‐d with hydrazine hydrate resulted in hydrolysis and decarboxylation to provide the 3‐halogeno‐1‐methylpyridazino[3,4‐b]quinoxaline‐4‐carboxylates 10a‐d , whose reaction with nitrous acid effected oxidation to furnish the 3‐halogeno‐4‐hydroxy‐1‐methylpyridazino[3,4‐b]quinoxaline‐4‐carboxylates 11a‐d , respectively. The reaction of compounds 11a‐d with hydrazine hydrate afforded the 3‐halogeno‐1‐methylpyridazino[3,4‐b]quinoxalin‐4‐ols 12a‐d , whose oxidation provided the 3‐halogeno‐1‐methylpyridazino[3,4‐b]quinoxalin‐4(1H)‐ones 6a‐d , respectively. Compounds 6a‐d had antifungal activities in vitro.  相似文献   

20.
The reaction between a variety of o‐phenylenediamines (=benzene‐1,2‐diamines), dialkyl acetylenedicarboxylates, and derivatives of nitrostyrene (=(E)‐(2‐nitroethenyl)benzene) in the presence of sulfamic acid (SA; H3NSO3) as catalyst led to the corresponding pyrrolo[1,2‐a]quinoxaline‐4(5H)‐one derivatives in high yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号