首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of the gas‐phase elimination kinetics of 2‐ethoxypyridine has been studied through the electronic structure calculations using density functional methods: B3LYP/6‐31G(d,p), B3LYP/6‐31++G(d,p), B3PW91/6‐31G(d,p), B3PW91/6‐31++G(d,p), MPW1PW91/6‐31G(d,p), MPW1PW91/6‐31++G(d,p), PBEPBE/6‐31G(d,p), PBEPBE/6‐31++G(d,p), PBE1PBE1/6‐31G(d,p), and PBE1PBE1/6‐31++G(d,p). The elimination reaction of 2‐ethoxypyridine occurs through a six‐centered transition state geometry involving the pyridine nitrogen, the substituted carbon of the aromatic ring, the ethoxy oxygen, two carbons of the ethoxy group, and a hydrogen atom, which migrates from the ethoxy group to the nitrogen to give 2‐pyridone and ethylene. The reaction mechanism appears to occur with the participation of π‐electrons, similar to alkyl vinyl ether elimination reaction, with simultaneous ethylene formation and hydrogen migration to the pyridine nitrogen producing 2‐pyridone. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
The kinetics and mechanisms of the gas‐phase elimination reactions of neopentyl chloride and neopentyl bromide have been studied by means of electronic structure calculations using density functional methods: B3LYP/6‐31G(d,p), B3LYP/ 6‐31++G(d,p), MPW1PW91/6‐31G(d,p), MPW1PW91/6‐31++G(d,p), PBEPBE/6‐31G(d,p), PBEPBE /6‐31++G(d,p). The reaction channels that account in products formation have a common first step involving a Wagner‐Meerwein rearrangement. The migration of the halide from the terminal carbon to the more substituted carbon is followed by beta‐elimination of HCl or HBr to give two olefins: the Sayzeff and Hoffmann products. Theoretical calculations demonstrated that these eliminations proceed through concerted asynchronous process. The transition state (TS) located for the rate‐determining step shows the halide detached and bridging between the terminal carbon and the quaternary carbon, while the methyl group is also migrating in a concerted fashion. The TS is described as an intimate ion‐pair with a large negative charge at the halide atom. The concerted migration of methyl group provides stabilization of the TS by delocalizing the electron density between the terminal carbon and the quaternary carbon. The B3LYP/6‐31++G(d,p) allows to obtain reasonable energies and enthalpies of activation. The nature of these reactions is examined in terms of geometrical parameters, electron distribution, and bond order analysis. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

3.
The kinetics and mechanisms of the dehydrochlorination of 2‐chloro‐1‐ phenylethane, 3‐chloro‐1‐phenylpropane, 4‐chloro‐1‐phenylbutane, 5‐chloro‐1‐phenylpentane, and their corresponding chloroalkanes were examined by means of electronic structure calculation using density functional theory methods B3LYP/6–31G(d,p), B3LYP/6–31++G(d,p), MPW1PW91/6–31G(d,p), MPW1PW91/6–31++G(d,p), PBEPBE/6–31G(d,p), and PBEPBE/6–31++G(d,p). The potential energy surface was investigated for the minimum energy path. Calculated enthalpies and energies of activation are in good agreement with experimental values using the MPW1PW91 and B3LYP methods. The transition state of these reactions is a four‐centered cyclic structure. The reported experimental results proposing neighboring group participation by the phenyl group was not supported by theoretical calculations. The rate‐determining process in these reactions is the breaking of Cl? C bond. The reactions are described as concerted moderately polar and nonsynchronous. © 2011 Wiley Peiodicals, Inc. Int J Chem Kinet 43: 292–302, 2011  相似文献   

4.
The gas‐phase elimination of several ω‐bromonitriles (ZCH2CH2Br, Z = NC, NCCH2, NCCH2CH2) has been examined at the MP2/6‐31G(d,p), MP2/6‐31G(2d,2p), B3PW91/6‐31G(2d,2p), and MPW91PW91/6‐31(2p,2d) levels of theory. The bromonitriles yield the corresponding cyano‐olefin and HBr gas in a rate‐determining step. The MPW91PW91/6‐31G(2p,2d) results suggest a concerted mechanism, with a polar, four‐membered transition state. The calculated kinetic and thermodynamic parameters were found to be within reasonable agreement with the experimental determinations. Substituent effects are discussed in terms of electronic structure. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 168–175, 2009  相似文献   

5.
Intramolecular hydrogen binding interactions in 8‐hydroxyquinoline, both in its zwitterionic tautomer and in the rotamer without the intramolecular hydrogen bond (IHB), have been computed using the B3LYP and MPW1K density functionals. The rotation of the O? H bond and intramolecular proton transfer reactions were studied theoretically. The following theory levels have been applied: B3LYP/6‐31G(d,p), B3LYP/6‐311++G(d,p), MPW1K/6‐311++G(d,p), and MPW1K/6‐311++G(2d,3p)//MPW1K/6‐311++G(d,p). Natural bond orbital (NBO) analysis has also been carried out. The effect of medium (benzene, chloroform, tetrahydrofuran, 1,2‐dichloroethane, acetone, water) was simulated using the self‐consistent reaction field (SCRF) method within the framework of the polarizable continuum model (PCM), at the MPW1K/6‐311++G(d,p) level. The evolution of geometry, relative energies, heights of rotation (around the O? H bond) and tautomerization barriers, IHB energies, and ΔG(solv) have been systematically investigated. The results obtained have shown the failure to neglect some changes of the above characteristics in polar media with respect to the gaseous phase. The series of stability of the forms under study in the gaseous phase remains the same in solution. Thus, in spite of the important role of the solvent electrostatic effects, the intrinsic stability of those species overcomes the solvent effects. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

6.
A theoretical quantum chemical study of the intramolecular hydrogen bonding interactions in 8-mercaptoquinoline has been carried out. Special attention has been paid to the rotation of S-H bond and intramolecular proton-transfer reactions. Therewith, the B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p), MPW1K/6-311++G(d,p), MPW1K/6-31+G(2d,2p), BH&HLYP/6-311++G(d,p), and G96LYP/6-311++G(d,p) methods have been used. By means of the Onsager and PCM reaction field methods, the effects of solvent on hydrogen-bond energies, conformational equilibria, rotational barriers, and tautomerism in aqueous solution have been studied. These simulations were done at the MPW1K/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels. Natural-bond orbital analysis has been performed to study the intramolecular hydrogen bond (IHB) in the gaseous phase and in aqueous medium. The stability of forms under consideration in solution does not coincide with that in the gaseous phase, underlining a great importance of the electrostatic influence of solvent. Double-proton transfer in the prototropic tautomerization of 8-mercaptoquinoline, one water molecule complex in the gaseous phase and in solution, has been systematically studied. The double-proton transfer occurs concertedly and synchronously. The water-assisted tautomerization is kinetically less, but thermodynamically more favorable, compared to that of the single-proton transfer. As in the case with single-proton transfer, for water-assisted reaction, the tautomerization energies and barrier heights decrease with the increase in dielectric constant, which implies faster and more complete tautomerization of 8-mercaptoquinoline in a polar solvent.  相似文献   

7.
Most quantum mechanical studies of triterpene synthesis have been done on small models. We calculated mPW1PW91/6-311+G(2d,p)//B3LYP/6-31G* energies for many C30H51O+ intermediates to establish the first comprehensive energy profiles for the cationic cyclization of oxidosqualene to lanosterol, lupeol, and hopen-3beta-ol. Differences among these 3 profiles were attributed to ring strain, steric effects, and proton affinity. Modest activation energy barriers and the ample exothermicity of most annulations indicated that the cationic intermediates rarely need enzymatic stabilization. The course of reaction is guided by hyperconjugation of the carbocationic 2p orbital with parallel C-C and C-H bonds. Hyperconjugation for cations with a horizontal 2p orbital (in the plane of the ABCD ring system) leads to annulation and ring expansion. If the 2p orbital becomes vertical, hyperconjugation fosters 1,2-methyl and hydride shifts. Transition states leading to rings D and E were bridged cyclopropane/carbonium ions, which allow ring expansion/annulation to bypass formation of undesirable anti-Markovnikov cations. Similar bridged species are also involved in many cation rearrangements. Our calculations revealed systematic errors in DFT cyclization energies. A spectacular example was the B3LYP/6-311+G(2d,p)//B3LYP/6-31G* prediction of endothermicity for the strongly exothermic cyclization of squalene to hopene. DFT cyclization energies for the 6-311+G(2d,p) basis set ranged from reasonable accuracy (mPW1PW91, TPSSh with 25% HF exchange) to underestimation (B3LYP, HCTH, TPSS, O3LYP) or overestimation (MP2, MPW1K, PBE1PBE). Despite minor inaccuracies, B3LYP/6-31G* geometries usually gave credible mPW1PW91 single-point energies. Nevertheless, DFT energies should be used cautiously until broadly reliable methods are established.  相似文献   

8.
9.
The B1LYP, B3LYP and MPW1PW91 density functional theory methods combined with the 6-311G(2d, 2p) basis set were used to carry out a density functional theory study of the NH3+HCO3H→HCOOH+H3NO reaction. The purpose of this work is to study the reaction mechanism from the viewpoint of bond order transformations throughout the course of the reaction, and propose the reasons for the apparent differences in activation barriers.  相似文献   

10.
A new chelidamate complex, [Cu(chel)(H2O)2(mpd)] (chel = chelidamate; mpd = 4-methylpyrimidine), has been synthesized and characterized through a combination of single crystal X-ray analysis, electron paramagnetic resonance (EPR), ultraviolet-visible (UV-vis), and fourier transform infrared spectroscopy (FT-IR). The complex has six-coordinate distorted octahedral geometry around Cu(II). The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and angles) have been calculated using Density Functional Theory (DFT)/B3LYP and Hartree Fock quantum chemical methods with 6-31G(d, p) basis set by Gaussian 09W software. The EPR spectrum of the compound showed that the paramagnetic center has rhombic symmetry. The EPR studies were carried out using the following unrestricted hybrid density functionals: B3LYP, CAM-B3LYP, HSEH1PBE, WB97XD, MPW1PW91, and BPV86. The UV–vis absorption spectra have been examined in different media and compared with the calculated one using TD-DFT method by applying the polarizable continuum model. Natural bond orbital property of complex has been performed by DFT/B3LYP with 6-31G (d, p) basis set.  相似文献   

11.
The CH3S* + O2 reaction system is considered an important process in atmospheric chemistry and in combustion as a pathway for the exothermic conversion of methane-thiyl radical, CH3S*. Several density functional and ab initio computational methods are used in this study to determine thermochemical parameters, reaction paths, and kinetic barriers in the CH3S* + O2 reaction system. The data are also used to evaluate feasibility of the DFT methods for higher molecular weight oxy-sulfur hydrocarbons, where sulfur presents added complexity from its many valence states. The methods include: B3LYP/6-311++G(d,p), B3LYP/6-311++G(3df,2p), CCSD(T)/6-311G(d,p)//MP2/6-31G(d,p), B3P86/6-311G(2d,2p)//B3P86/6-31G(d), B3PW91/6-311++G(3df,2p), G3MP2, and CBS-QB3. The well depth for the CH3S* + 3O2 reaction to the syn-CH3SOO* adduct is found to be 9.7 kcal/mol. Low barrier exit channels from the syn-CH3SOO* adduct include: CH2S + HO2, (TS6, E(a) is 12.5 kcal/mol), CH3 + SO2 via CH3SO2 (TS2', E(a) is 17.8) and CH3SO + O (TS17, E(a) is 24.7) where the activation energy is relative to the syn-CH3SOO* stabilized adduct. The transition state (TS5) for formation of the CH3SOO adduct from CH3S* + O2 and the reverse dissociation of CH3SOO to CH3S* + O2 is relatively tight compared to typical association and simple bond dissociation reactions; this is a result of the very weak interaction. Reverse reaction is the dominant dissociation path due to enthalpy and entropy considerations. The rate constants from the chemical activation reaction and from the stabilized adduct to these products are estimated as functions of temperature and pressure. Our forward rate constant and CH3S loss profile are in agreement with the experiments under similar conditions. Of the methods above, the G3MP2 and CBS-QB3 composite methods are recommended for thermochemical determinations on these carbon-sulfur-oxygen systems, when they are feasible.  相似文献   

12.
A comparison of the performance of various density functional methods including long‐range corrected and dispersion corrected methods [MPW1PW91, B3LYP, B3PW91, B97‐D, B1B95, MPWB1K, M06‐2X, SVWN5, ωB97XD, long‐range correction (LC)‐ωPBE, and CAM‐B3LYP using 6‐31+G(d,p) basis set] in the study of CH···π, OH···π, and NH···π interactions were done using weak complexes of neutral (A) and cationic (A+) forms of alanine with benzene by taking the Møller–Plesset (MP2)/6‐31+G(d,p) results as the reference. Further, the binding energies of the neutral alanine–benzene complexes were assessed at coupled cluster (CCSD)/6‐31G(d,p) method. Analysis of the molecular geometries and interaction energies at density functional theory (DFT), MP2, CCSD methods and CCSD(T) single point level reveal that MP2 is the best overall performer for noncovalent interactions giving accuracy close to CCSD method. MPWB1K fared better in interaction energy calculations than other DFT methods. In the case of M06‐2X, SVWN5, and the dispersion corrected B97‐D, the interaction energies are significantly overrated for neutral systems compared to other methods. However, for cationic systems, B97‐D yields structures and interaction energies similar to MP2 and MPWB1K methods. Among the long‐range corrected methods, LC‐ωPBE and CAM‐B3LYP methods show close agreement with MP2 values while ωB97XD energies are notably higher than MP2 values. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

13.
A theoretical study of the thermal decomposition kinetics of ethane halides(C2H6-nXn(n = 1~3);X = F,Cl,Br) has been carried out at the B3LYP/6-31++G** and B3PW91/631++G** levels of theory.Among these methods and comparison of activation parameters with available experimental values,the B3PW91/6-31++G** method is in good agreement with the experimental data.The analysis of bond order and natural bond orbital(NBO) charges,bond indexes,and synchronicity parameters suggest the elimination of HX in reactions 1~9(HF:compounds 1~3,HCl:compounds 4~6,and HBr:compounds 7~9) occur through a concerted and slightly asynchronous four-membered cyclic transition state type of mechanism.  相似文献   

14.
15.
The knowledge of thermochemical parameters such as the enthalpy of formation, gas-phase basicity, and proton affinity may be the key to understanding molecular reactivity. The obtention of these thermochemical parameters by theoretical chemical models may be advantageous when experimental measurements are difficult to accomplish. The development of ab initio composite models represents a major advance in the obtention of these thermochemical parameters, but these methods do not always lead to accurate values. Aiming at achieving a comparison between the ab initio models and the hybrid models based on the density functional theory (DFT), we have studied gamma-butyrolactone and 2-pyrrolidinone with a goal of obtaining high-quality thermochemical parameters using the composite chemical models G2, G2MP2, MP2, G3, CBS-Q, CBS-4, and CBS-QB3; the DFT methods B3LYP, B3P86, PW91PW91, mPW1PW, and B98; and the basis sets 6-31G(d), 6-31+G(d), 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p), 6-311G(d), 6-311+G(d), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ. Values obtained for the enthalpies of formation, proton affinity, and gas-phase basicity of the two target molecules were compared to the experimental data reported in the literature. The best results were achieved with the use of DFT models, and the B3LYP method led to the most accurate data.  相似文献   

16.
17.
The molecular structure of fluoromalononitrile was studied by means of gas-phase electron diffraction and quantum mechanical methods using HF/6-31G(d), MP2/6-311++G(2df,2pd) and DFT/B3LYP/6-31G(d), B3PW91/6-31G(d), B3LYP/6-311++G(2df,2pd) and B3PW91/6-311++G(2df,2pd). The r(g) and angle(alpha) structural parameters we obtained from the present analysis are: CC=1.487(5) A, CN=1.157(3) A, CF=1.386(5) A, CH=1.096 A (ass.), angleCCC=106.7(1.0) degrees , angleCCF=108.0(0.7) degrees , angleCCN=177.6(2.0) degrees . Uncertainties in parenthesis are 3sigma.  相似文献   

18.
分子几何构型优化方法的系统性比较   总被引:7,自引:2,他引:5  
对《CRC物理化学手册》第77版中收集的第三周期以前的所有已知实验构型的无机分子的构型,以MP2、B3LYP、B3PW91级别上进行了构型优化的系统性比较,优化采用基组为6-31G(d,p),6-311G(d,p),6-311G(2d,p)。对大多数分子另比较了QCISD(T)方法,对多原子分子比较了BPW91方法,对含氢双原子分子也使用QCISD方法。结果表明,键长的平均绝对偏差(单位:ppm)  相似文献   

19.
使用了不同密度泛函方法计算X-H (X = C, N, O, Si, P, S) 键离解能,并分析不同密度泛函方法的计算精度。研究发现大多数密度泛函方法包括B3LYP, B3P86, B3PW91, G96LYP, PBE1PBE,和BH&HLYP都明显低估键离解能13-25 kJ/mol。该现象与是否使用无限基组无关,因为即使使用无限基组键离解能仍然被低估。因此密度泛函方法不适合用于键离解能的估算。其中B3P86方法的偏差最小。进一步分析表明,使用限制性开壳层计算并无任何优势,在大多数情况下非限制性开壳层计算实际上比限制性开壳层计算要好。最后,我们发现了密度泛函方法对键离解能的低估是系统的,因此建议利用校准后的UDFT/6-311++G(d, p)方法计算化学键离解能。  相似文献   

20.
MF6- (M = As or Sb) salts of a simple derivative of the trithietanylium PhCSSS+, 1, were synthesized for the first time by the reaction of PhCS3Cl and AgMF6 in liquid SO2. 1SbF6 was characterized by IR, FT-Raman, and NMR spectroscopy, elemental analysis, and a preliminary X-ray crystal structure. 1AsF6 was characterized by 1H NMR and FT-Raman spectroscopy. The calculated (MPW1PW91/3-21G* or 6-31G*) geometries, 1H and 13C chemical shifts (MPW1PW91/6-311G(2DF)//MPW1PW91/3-21G*), and vibrational frequencies and intensities (MPW1PW91/6-31G*) were in satisfactory agreement with the observed values. The calculated pi type molecular orbitals of HCSSS+ (MPW1PW91/6-311+G*) and 1 (MPW1PW91/3-21G*) imply that the 6pi-CSSS+ ring has some aromatic character. 1SbF6 undergoes a metathesis reaction with NBu4Cl in liquid SO2 to give PhCS3Cl, which was characterized by vibrational spectroscopy and mass spectrometry. The evidence indicates that PhCS3Cl has the ionic formulation PhCSSS+ Cl- with significant cation-anion interactions in the solid state. ArCSSS+ SbF6- (Ar = 1-naphthyl), 14SbF6, was prepared from ArCS3Cl and AgSbF6, suggesting that the synthesis of MF6- (M = As or Sb) salts of RCSSS+ is potentially general for aryl derivatives. The structure of 14SbF6 was established by 1H and 13C NMR, IR, and FT-Raman spectroscopy, and theoretical calculations gave values in agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号