首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
One‐pot reaction of equimolar amounts of phthaloyl chloride and N‐aryl‐benzamidrazones in the presence of two equivalents of triethylamine (Et3N), gave at r.t. 4‐aryl‐3‐(o‐carboxyphenyl)‐5‐phenyl‐1,2,4‐triazoles in good yields. The structure of the obtained products was proved by IR, mass, NMR spectra, and elemental analyses. The mechanism of product formation is discussed.  相似文献   

2.
N‐Hydroxyiminoyl chlorides reacted with N‐alkyl ethynesulfonamides in the presence of triethylamine in CH2Cl2 to afford the 4‐alkyl‐3‐aryl‐4,5‐dihydro‐1,5,2,4‐oxathiadiazepine‐5,5‐diones (3) as the major products together with N‐alkyl‐3‐aryl‐5‐isoxazolesulfonamides (4). © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 461–464, 1999  相似文献   

3.
A series of tin(II) complexes supported by N2O2 bis(phenol)‐amine ligands were prepared from the reactions of the corresponding ligands with Sn[N(SiMe3)2]2 in benzene at room temperature. The ligands were designed to have different substituted group at the ortho‐position on the aryl rings (R = tBu, CH3) and N‐containing side arm (E = ? CH2NEt2 and pyridine) giving a variation of tin(II) complexes (R = tBu, E = CH2NEt2, 2a ; R = tBu, E = py, 2b ; R = CH3, E = CH2NEt2, 2c ; R = CH3, E = py, 2d ). All complexes were characterized by NMR spectroscopy and single‐crystal X‐ray analysis. The single‐crystal X‐ray crystallography revealed that all complexes have a monomeric four‐coordinate tin center with a distorted seesaw structure. All complexes are active for solvent‐free polymerization of l ‐lactide at 120 °C giving poly(l ‐lactide) with narrow to moderate dispersity (Ð = 1.12–1.56). In the presence of benzyl alcohol during the polymerization, the resulting polymer was found to be linear having benzyl alcohol as the end group while, in the absence of benzyl alcohol, the polymer was cyclic. The large tBu group at the ortho‐position was found to decrease polymerization activity while the more basic ? CH2NEt2 group was found to increase the polymerization activity. The polymerization of rac‐lactide under a similar condition gave PLA having a slight heterotactic bias for all catalysts. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2104–2112  相似文献   

4.
This article describes the synthesis and characterization of polyisobutylene (PIB) carrying one primary hydroxyl head group and a tertiary chloride end group, [Ph? C(CH3)(CH2OH)–PIB–CH2? C(CH3)2Cl] prepared with direct functionalization via initiation. The polymerization of isobutylene was initiated with the α‐methylstyrene epoxide/titanium tetrachloride system. Living conditions were obtained from ?75 to ?50 °C (198–223 K). Low molecular weight samples (number‐average molecular weight ~ 4000 g/mol) were prepared under suitable conditions and characterized by Fourier transform infrared and 1H NMR spectroscopy. The presence of primary hydroxyl head groups in PIB was verified by both methods. Quantitative Fourier transform infrared with 2‐phenyl‐1‐propanol calibration and 1H NMR performed on both the hydroxyl‐functionalized PIB and its reaction product with trimethylchlorosilane showed that each polymer chain carried one primary hydroxyl head group. The synthetic methodology presented here is an effective and simple route for the direct functionalization of PIB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1005–1015, 2002  相似文献   

5.
The values of pseudo first‐order rate constants (kobs) for the cleavage of N‐(2‐hydroxyphenyl)phthalamic acid ( 7 ), obtained at 4.9 × 10?2 M HCl, 35°C, and within CH3CN content range 2–80% (v/v) in mixed aqueous solvent are smaller than kobs for the cleavage of N‐(2‐methoxyphenyl)phthalamic acid ( 8 ), obtained under almost similar experimental conditions, by nearly 1.5‐ to 2‐fold. These observations show the absence of expected intramolecular general acid catalysis due to 2‐OH group in 7 . The values of kobs for the cleavage of 7 and 8 decrease by more than 20‐fold with the increase in the content of CH3CN from 2 to 80–82% (v/v) in mixed aqueous solvent. The kinetic data reveal that in acidic aqueous cleavage of 7 , N‐cyclization (leading to the formation of imide) and O‐cyclization (leading to the formation of phthalic anhydride) vary from ~10 to 15% and ~90 to 85%, respectively, with the increase in CH3CN content from 2 to 80% (v/v). Similar increase in CH3CN content causes increase in N‐cyclization from ~0 to 5% and decrease in O‐cyclization from ~100 to 95% in the acidic aqueous cleavage of 8 . Some speculative, yet conceivable, reasons for nearly 10 and 0% N‐cyclization in the cleavage of respective 7 and 8 at low content of CH3CN have been described. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 746–758, 2006  相似文献   

6.
A bimolecular rate constant,kDHO, of (29 ± 9) × 10?12 cm3 molecule?1 s?1 was measured using the relative rate technique for the reaction of the hydroxyl radical (OH) with 3,5‐dimethyl‐1‐hexyn‐3‐ol (DHO, HC?CC(OH)(CH3)CH2CH(CH3)2) at (297 ± 3) K and 1 atm total pressure. To more clearly define DHO's indoor environment degradation mechanism, the products of the DHO + OH reaction were also investigated. The positively identified DHO/OH reaction products were acetone ((CH3)2C?O), 3‐butyne‐2‐one (3B2O, HC?CC(?O)(CH3)), 2‐methyl‐propanal (2MP, H(O?)CCH(CH3)2), 4‐methyl‐2‐pentanone (MIBK, CH3C(?O)CH2CH(CH3)2), ethanedial (GLY, HC(?O)C(?O)H), 2‐oxopropanal (MGLY, CH3C(?O)C(?O)H), and 2,3‐butanedione (23BD, CH3C(?O)C(?O)CH3). The yields of 3B2O and MIBK from the DHO/OH reaction were (8.4 ± 0.3) and (26 ± 2)%, respectively. The use of derivatizing agents O‐(2,3,4,5,6‐pentalfluorobenzyl)hydroxylamine (PFBHA) and N,O‐bis(trimethylsilyl)trifluoroacetamide (BSTFA) clearly indicated that several other reaction products were formed. The elucidation of these other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible DHO/OH reaction mechanisms based on previously published volatile organic compound/OH gas‐phase reaction mechanisms. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 534–544, 2004  相似文献   

7.
2a,4‐Disubstituted 5‐benzoyl‐2‐chloro/2,2‐dichloro‐2a,3,4,5‐tetrahydro‐azeto [1,2‐a] [1,5]benzodiazepin‐1 (2H)‐ones ( 3a–h ) were synthesized by cycloaddition reactions of 2,4‐disubstituted 1‐benzoyl‐2,3‐dihydr o‐1H‐1,5‐benzodiazepines ( 2a–h ) and ketenes, generated from chloroacetyl chloride or dichloroacetyl chloride in the presence of triethylamine, in anhydrous benzene. In some cases, ring contraction of benzodiazepines has also been observed. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:636–640, 2001  相似文献   

8.
The reaction of Hppko (Hppko = phenyl 2‐pyridyl ketone oxime) and CoCl2 · 6H2O in the CH3OH solvent with the presence of triethylamine (NEt3) at room temperature and the exposure to air resulted in the formation of a new pentanuclear, mixed‐valence cobalt complex with the molecular formula [{CoII(CH3O)3}2{CoIII33‐O)(ppko)3}Cl2]. X‐ray single crystal analysis displays a trigonal bipyramid configuration with the terminal two CoII ions wrapping an triangle [CoIII3O]7+ core. The intermolecular C–H ··· O and C–H ··· Cl interactions form a 2D network framework. The analysis of magnetic susceptibility revealed the dominant antiferromagnetic interactions and strong orbital contribution of CoII ions.  相似文献   

9.
A new class of phosphorus macrocycles were synthesized from 2‐[(E)‐2‐2 [(hydroxymethyl) phenyl] imino ethylidene) amino] phenyl methanol 1 with various phenylphosphorodichloridates, phenyldichlorophosphine, and ethyldichlorophosphite in the presence of triethylamine at 0–10°C under N2 atmosphere in THF. All the title compounds were confirmed by analytical and spectral data (IR, 1H‐, 13C‐, 31P‐NMR, and mass). The title compounds exhibited promising anti‐oxidant activity. J. Heterocyclic Chem., (2011).  相似文献   

10.
Ethyl 2‐(chloromethyl)‐2‐hydroxy‐2H‐chromene‐3‐carboxylates 2a – 2j have been synthesized by reaction of substituted salicylaldehydes with ethyl 4‐chloro‐3‐oxobutanoate, in the presence of piperidine in CH2Cl2 at room temperature, in good yields.  相似文献   

11.
The 2,6,8‐triaryl‐3‐iodoquinolin‐4(1H)‐ones derived from the 2,6,8‐triarylquinolin‐4(1H)‐ones were found to undergo Suzuki–Miyaura cross‐coupling with arylboronic acids to afford the corresponding 2,3,6,8‐tetraarylquinolin‐4(1H)‐ones. Sonogashira cross‐coupling of the 2,6,8‐triaryl‐3‐iodoquinolin‐4(1H)‐ones with terminal acetylene in DMF–water (4:1, v/v) in the presence of triethylamine, on the other hand, afforded the 2‐substituted 4,6,8‐triaryl‐1H‐furo[3,2‐c]quinolines in a single‐pot operation.  相似文献   

12.
Due to the mesomeric interaction of the nitrogen lone pair with the As=C double bond, the perfluoroarsapropene derivative F3CAs=C(F)NEt2 ( 1 ) is sufficiently stable to serve as a ligand in transition metal carbonyl complexes. 1 was coordinated to chromium by reaction with the photochemically generated labile complex Cr(CO)5(THF), yielding the monosubstituted pentacarbonyl derivative Cr(CO)5[F3CAs=C(F)NEt2] ( 2 ). Already at room temperature, this is slowly transformed into the binuclear complex [F3CAs=C(F)NEt2][Cr(CO)5]2 ( 3 ) by replacing 1 from a neighbouring molecule by the stronger donor 2 . In a closed system 3 obviously exists in an equilibrium with 1 and 2 . Both complexes are related to the previously studied derivatives of the 2‐dimethylamino‐perfluoro‐1‐phosphapropene ligand. The products were identified by spectroscopic (IR, NMR) investigations and comparison with the related phosphaalkene complexes.  相似文献   

13.
A variety of novel O,O‐Diphenyl N‐(trichlorogermanyl)propiono‐α‐aminophosphonates were synthesized by the reaction of β‐(trichlorogermanyl) propionyl chloride with diphenyl α‐aminophosphonates in the presence of triethylamine. The structures of all of the products were confirmed by 1H‐NMR spectroscopy, elemental analyses, and IR spectroscopy. Data of 1H‐NMR and IR spectroscopic determinations indicated the title compounds to be pentacoordinated organogermanium compounds. The results of bioassay showed that some of the title compounds possess potential anticancer activity. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 5–8, 1999  相似文献   

14.
Kinetic study on the cleavage of N‐(4′‐methoxyphenyl)phthalamic acid (NMPPAH) in mixed H2O‐CH3CN and H2O‐1,4‐dioxan solvents containing 0.05 M HCl reveals the formation of phthalic anhydride (PAn)/phthalic acid (PA) as the sole or major product. Pseudo first‐order rate constants (k1) for the conversion of NMPPAH to PAn decrease nonlinearly from 60.4 × 10?5 to 2.64 × 10?5 s?1 with the increase in the contents of 1,4‐dioxan from 10 to 80% v/v in mixed aqueous solvents. The rate of cleavage of NMPPAH in mixed H2O‐CH3CN solvents at ≥50% v/v CH3CN follows an irreversible consecutive reaction path: NMPPAH PA. The values of k1 are larger in H2O‐CH3CN than in H2O‐1,4‐dioxan solvents. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 316–325, 2004  相似文献   

15.
The reactions of hexachlorocyclotriphosphazene N3P3Cl6 ( 1 ) with 1‐naphthol and 1‐naphthylamine have been examined. The reaction of 1 with sodium 1‐naphthoxy gave the hexakis(1‐naphthoxy)cyclotriphosphazene ( 2 ) in high yield. Geminal 2,2‐di(1‐naphthylamino)‐4,4,6,6‐tetrachlorocyclotriphosphazene ( 3 ) was obtained from the reaction of 1 with 1‐naphthylamine. The structures of phosphazene derivatives were defined by elemental analysis, FTIR, UV‐‐visible, and 1H, 13C, 31P NMR spectroscopy. The fluorescence intensity of the compounds was measured in THF and CH2Cl2. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:158–162, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20400  相似文献   

16.
Yakup Budak 《中国化学》2012,30(2):341-344
A series of thiophenyl‐containing 3‐thiophene derivatives ( 4a – 4i ) were prepared via the reaction of chalcone‐analogua compounds ( 3a – 3i ) and thiophenol in the presence of catalytic amount of KOBu‐t in CH2Cl2 with moderate to high yields. The mechanistic pathway of the reaction was explained by the Michael‐type addition of thiophenol to chalcone derivatives ( 3a – 3i ).  相似文献   

17.
The title imino–phosphine compound, [PdCl2(C26H22NP)]·CH3CN, was prepared by reaction of N‐[2‐(diphenylphosphanyl)benzylidene]‐2‐methylaniline with dichlorido(cycloocta‐1,5‐diene)palladium(II) in dry CH2Cl2. The PdII cation is coordinated by the P and N atoms of the bidentate chelating ligand and by two chloride anions, generating a distorted square‐planar coordination geometry. There is a detectable trans influence for the chloride ligands. The methyl group present in this structure has an influence on the crystal packing.  相似文献   

18.
Reaction of 1, 9‐dihydro‐purine‐6‐thione (puSH2) in presence of aqueous sodium hydroxide with PdCl2(PPh3)2 suspended in ethanol formed [Pd(κ2‐N7,S‐puS)(PPh3)2] ( 1 ). Similarly, complexes [Pd(κ2‐N7,S‐puS)(κ2‐P, P‐L‐L)] ( 2 – 4 ) {L‐L = dppm (m = 1) ( 2 ), dppp (m = 3) ( 3 ), dppb (m = 4) ( 4 )} were prepared using precursors the [PdCl2(L‐L)] {L‐L = Ph2P–(CH2)m–PPh2}. Reaction of puSH2 suspended in benzene with platinic acid, H2PtCl6, in ethanol in the presence of triethylamine followed by the addition of PPh3 yielded the complex [Pt(κ2‐N7,S‐puS)(PPh3)2] ( 5 ). Complexes [Pt(κ2‐N7,S‐puS)(κ2‐P, P‐L‐L)] ( 6 – 8 ) {L‐L = dppm ( 6 ), dppp ( 7 ), dppb ( 8 )} were prepared similarly. The 1, 9‐dihydro‐purine‐6‐thione acts as N7,S‐chelating dianion in compounds 1 – 8 . The reaction of copper(I) chloride [or copper(I) bromide] in acetonitrile with puSH2 and the addition of PPh3 in methanol yielded the same product, [Cu(κ2‐N7,S‐puSH)(PPh3)2] ( 9 ), in which the halogen atoms are removed by uninegative N, S‐chelating puSH anion. However, copper(I) iodide did not lose iodide and formed the tetrahedral complex, [CuI(κ1‐S‐puSH2)(PPh3)2] ( 10 ), in which the thio ligand is neutral. These complexes were characterized with the help of elemental analysis, NMR spectroscopy (1H, 31P), and single‐crystal X‐ray crystallography ( 3 , 7 , 8 , 9 , and 10 ).  相似文献   

19.
Complexes of pyrrole‐2‐carbaldehyde thiosemicarbazones, [(C4H4N4)(H)C2=N3–N2(H)–C1(=S)–N1HR; R = Ph, H2L1; Me, H2L2; H, H2L3] with nickel(II) and palladium(II) are described. The reaction of nickel(II) acetate with H2L1 in methanol in 1:1 molar ratio yielded a complex of composition, [Ni(κ2‐N3,S‐HL1)2] ( 1 ). Likewise reaction of NiCl2 with H2L2 in 1:1 molar ratio in acetonitrile in the presence of triethylamine base followed by the addition of pyridine did not yield the anticipated [Ni(κ3‐N4,N3,S‐L2)(py)] complex, moreover a bis‐square‐planar complex, [Ni(κ2‐N3,S‐HL2)2] ( 2 ) was formed. However, in the presence of bipyridine (bipy), it yielded the addition product, [Ni(κ2‐N3,S‐HL2)22‐N, N‐bipy)] ( 3 ). Reaction of PdCl22‐P, P–PPh2–CH2–PPh2) with H2L3 in toluene in the presence of triethylamine has yielded a complex of stoichiometry, [Pd(κ3‐N4,N3,S–L3)(κ1‐P–PPh2–CH2–P(O)Ph2] ( 4 ). The ligands (HL1) and (HL2) are chelating to NiII metal atom as anions binding through N3,S‐donor atoms with pendant pyrrole groups, and (L3)2– is chelating to the PdII metal atom as dianion through N4,N3,S‐donor atoms (pyrrole is N4‐bonded). Fourth site in 4 is bonded to one P‐donor atom of PPh2–CH2–P(O)Ph2, whose pendant –PPh2 group involves auto oxidation to –P(O)PPh2 during reaction. These complexes were characterized using analytical data, IR, NMR (1H, 31P) spectroscopy and X‐ray crystallography. Complexes 1 , 2 , and 4 have square‐planar arrangement, whereas complex 3 is octahedral.  相似文献   

20.
The pseudo‐Michael reaction of 1‐aryl‐2‐aminoimidazolines‐2 with diethyl ethoxymethylenemalonate (DEEM) was investigated. Extensive structural studies were performed to confirm the reaction course. For derivatives with N1 aromatic substituents, it was found that the reaction course was temperature dependent. When the reaction temperature was held at ?10 °C only the formation of 1‐aryl‐7(1H)‐oxo‐2,3‐dihydroimi‐dazo[1,2‐a]pyrimidine‐6‐carboxylates ( 4 ) was observed in contrast to earlier suggestions. Under the room temperature conditions, the same reaction yielded mixtures, with varying ratio, of isomeric 1‐aryl‐7(1H)‐oxo‐ ( 4a‐4f ) and 1‐aryl‐5(1H)‐oxo‐2,3‐dihydroimidazo[1,2‐a]pyrimidine‐6‐carboxylates ( 5a‐5f ). The molecular structure of selected isomers, 4b and 5c , was confirmed by X‐ray crystallography. Frontal chro‐matography with delivery from the edge was applied for the separation of the isomeric esters. The isomer ratio of the reaction products depended on the character of the substituents on the phenyl ring. The 1‐aryl‐7(1H)‐oxo‐carboxylates ( 4a‐4f ) were preferably when the phenyl ring contained H, 4‐CH3, 4‐OCH3 and 3,4‐Cl2 substituents. Chloro substitution at either position 3 or 4 in the phenyl ring favored the formation of isomers 5a‐5f . The isomer ratios were confirmed both by 1H NMR and chromatography. The reaction of the respective hydrobromides of 1‐aryl‐2‐aminoimidazoline‐2 with DEEM, in the presence of triethylamine, gave selectively 5(1H)‐oxo‐esters ( 5a‐5f ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号