首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In continuation of our previous work in which salicylic acid was reported to give a very sensitive and an almost specific colour reaction with vanadium(V), we have now found that vanadium(V) reacts with resorcinol in 20 N sulphuric or phosphoric acid solution to give a blue coloured product, which gives a vivid red fluorescence under filtered ultraviolet light. A sensitive test for vanadium(V) has now been developed making use of this red fluorescence or of the bright blue colour. Dichromate gives a somewhat less sensitive violet colour with the resorcinol reagent under the same conditions, but the product does not fluoresce. Manganese(VII), cerium(IV), iron(III), titanium(IV), uranium(VI), molybdenum(VI) and tungsten(VI) do not interfere with the colour reaction or the fluorescence test for vanadium(V).  相似文献   

2.
Conditions of the selective sorption–spectrometric determination of vanadium(IV) and vanadium(V) using sulfonitrophenol M were found. The determination of vanadium (visual test (RSD = 30%) using a reference color scale or quantitative determination (RSD < 10%) by diffuse reflectance spectra is performed immediately after the dynamic-mode sorption of its colored complexes with sulfonitrophenol M at pH 3.5 (vanadium(IV)) or with sulfonitrophenol M and hydroxylamine at pH 1.5 (vanadium(V), 650 nm) at the surface of polyamide membrane disks (d= 1 cm, l= 0.1 mm, m= 2.7 mg). The flow rate is 10–20 mL/min. The detection limit is 5–7 ng of vanadium in the support zone or 0.2–0.5 ng/mL. The determination of 0.5–5 ng/mL vanadium(V) at pH 1.5 does not interfere with 20-fold amounts of V(IV) and 1000-fold amounts of Ni, Zn, Cd, Mg, Co, Cr(III), Mn, PO3- 4, and F.  相似文献   

3.
A sensitive and simultaneous spectrophotometric flow injection method for the determination of vanadium(IV) and vanadium(V) is proposed. The method is based on the effect of ligands such as 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ) and diphosphate on the conditional redox potential of iron(III)/iron(II) system. A four-channel flow system is assembled. In this flow system, diluted hydrochloric acid (1.0 x 10(-2) mol dm(-3)) as a carrier for standard/sample, acetate buffer (pH 5.5) as a carrier for diphosphate solution, an equimolar mixed solution of iron(III) and iron(II) and a TPTZ solution are delivered, so that the baseline absorbance can be established by forming a constant amount of iron(II)-TPTZ complex (lambda(max) = 593 nm). Vanadium(IV) and/or vanadium(V) (400 microL) and diphosphate (200 microL) solutions are simultaneously introduced into the flow system; in this system the diphosphate solution passes through a delay coil. The potential of the iron(III)/iron(II) system increases in the presence of TPTZ, and therefore vanadium(IV) is easily oxidized by iron(III) to vanadium(V) to produce an iron(II)-TPTZ complex (a positive peak for vanadium(IV) appears). On the other hand, the potential of the redox system decreases in the presence of diphosphate, so that vanadium(V) can be easily reduced by iron(II) to vanadium(IV). In this case, the amount of iron(II) decreases according to the amount of vanadium(V). As a result, the produced iron(II)-TPTZ complex decreases (a negative peak for vanadium(V) appears). In this manner, two peaks for vanadium(IV) and vanadium(V) can be alternately obtained. The limits of detection (S/N = 3) are 1.98 x 10(-7) and 2.97 x 10(-7) mol dm(-3) for vanadium(IV) and vanadium(V), respectively. The method is applied to the simultaneous determination of vanadium(IV) and vanadium(V) in commercial bottled mineral water samples.  相似文献   

4.
The promoting effect of vanadium(V, IV) in the reaction of gallic acid oxidation with bromate ions in aqueous solutions was studied, and the dependence of the rates of catalytic and noncatalytic reactions on the concentration of components was found. A catalytic mechanism was proposed based on the experimental results and data of quantum-mechanical calculations. The linear dependence of the rate of the catalytic reaction on the concentration of vanadium(V)/vanadium(IV) was used to determine these ions in solutions by catalytic photometry. The detection limit was 0.01 μg in an aliquot portion of the test solution; the determination error was less than 20%. The conditions were found for stabilizing the properties of paper supports for more than 30 days, since the interaction of filter and chromatographic papers with bromate ions was found. An adsorption- catalytic test method was proposed for the semiquantitative visual determination of vanadium ions in water and aqueous solutions by the color of the pretreated paper strip immersed in the test solution. The detection limit for vanadium ions was 0.1 mg/L. The 100-fold amounts of Ni(II), Mn(II), Cr(III), and Co(II) do not interfere with the determination. The method was tested on river and sea water samples from different sources.  相似文献   

5.
Qihua C  Bo G  Yuyong Z 《Talanta》1989,36(6):665-668
The determination of vanadium(V) and molybdenum(VI) by a Landolt-type reaction with bromate, iodide and ascorbic acid is reported. For the determination of vanadium(V) the molybdenum(VI) is masked with citrate-citric acid buffer, which also controls the pH. Molybdenum(VI) is determined in the presence of thiourea as masking agent for vanadium(V).  相似文献   

6.
A method for the quantitative determination of vanadium(V), based on the reduction of vanadium(V) by hydrazine, has been described. The reduction is carried out in high concentration of hydrochloric acid and the excess hydrazine back-titrated against standard potassium bromate, using the dead-stop end-point procedure. Hydrazine is preferentially oxidized by bromate in presence of vanadium(IV). Accurate results have been obtained over a wide range of vanadium(V) concentration.  相似文献   

7.
The separation and preconcentration of vanadium (IV) and vanadium (V) using Sephadex DEAE A-25 with Eriochrome Cyanine R has been studied, based on the preconcentration of vanadium (IV) in the first step and V(V) after reduction with ascorbic acid in the second step. Factors affecting the optimum fixation of the complex were investigated. The absorbance of the solid phase is measured directly at 563 nm for V(IV), at 585 nm for V(V) and at 750 nm for both. The proposed method provides a simple and specific procedure for the separation of vanadium in natural waters. The calibration graph is linear up to 150 ng/mL, with RSD of 4.7% for V(IV) and 4.0% for V(V). The detection limits are 1.6 and 1.4 ng/mL for V(IV) and V(V), respectively.  相似文献   

8.
通过对测定条件的优化,采用高钒系列标准样品建立分析程序,完成类型标准化,校验后再进行测定,建立了火花直读光谱法对铝及铝合金中的钒含量进行测定的方法。选用E2235高钒标准样品进行标准化,所得测定值与标准值基本一致,相对标准偏差为2.9%(n=8)。结果表明,当测定元素含量不超过0.020%时,方法准确、可靠,适合于铝及铝合金中微量钒含量的测定。  相似文献   

9.
L-Ascorbic acid interacts with vanadium(V) over the pH range of 0.4-7.0 to form three different coordination complexes. Both inner- and outer-sphere electron-transfer pathways are proposed to form vanadium(IV) complexes with L-ascorbate or dehydroascorbate, respectively. Effects of the pH on the coordination of L-ascorbic acid to the vanadium(V) center were observed and are presumably related to the speciation of the vanadium(V) ion. Three vanadium(IV) complexes were observed using ambient-temperature electron paramagnetic resonance spectroscopy. Two of these complexes are proposed to be vanadium(IV) L-ascorbate complexes, and one is consistent with a vanadium(IV) dehydroascorbic acid complex proposed earlier. These reduction reactions will occur under physiological conditions and could be important to the reduction of vanadium(V)-containing coordination complexes used as insulin-enhancing agents for treatment of diabetes.  相似文献   

10.
Khuhawar MY  Arain GM 《Talanta》2006,68(3):535-541
Liquid chromatographic method has been developed, based on precolumn derivatization of vanadium(V) with 2-acetylpyridine-4-phenyl-3-thiosemicarbazone (APPT). The complex is extracted in chloroform together with palladium(II), tin(II) and iron(III) and eluted and separated completely from Kromasil 100 C-18, 10 μm (25 cm × 4.6 mm i.d.) column with methanol:water:acetonitrile (60:30:10, v/v/v) with a flow rate of 1 ml/min. UV detection was at 260 nm. Linear calibration curve was obtained with 1-12.5 μg/ml vanadium(V) with detection limit of 8 ng/injection (20 μl). A number of metal ions tested did not affect the determination of vanadium. The test mixtures were analyzed for vanadium(IV) and vanadium(V) contents and relative% error was obtained ±1-8%. The method was applied for the determination of vanadium in petroleum oils and mineral ore samples with vanadium contents of 0.32-2.3 and 121.7-717.3 μg/g with R.S.D. of 1.5-4.5 and 0.38-4.7%, respectively. The results correlated with reported values and by atomic absorption spectrophotometry.  相似文献   

11.
Continuous expressions are derived for the titration of vanadium(V) with iron (II) in the presence of excess EDTA and for the titration of vanadium(V) with EDTA in the presence of excess iron (II). A new method of EDTA titration of vanadium(V) is developed based on the theoretical consideration of these expressions. The method is simple, selective and reliable.  相似文献   

12.
The IR and electronic absorption spectra of di-2-ethylhexyl hydrogen phosphate (HDEHP) extracts of vanadium(V) and sulfuric acid and of vanadium(V) solutions in sulfuric acid were studied. The composition of the extractable complex was determined, and the equation of vanadium(V) extraction with HDEHP was suggested. The equilibrium constant of vanadium(V) extraction from concentrated sulfuric acid solutions was found.  相似文献   

13.
Reactions and Thermal Behaviour of Nonoxo Vanadium(IV) Complexes. Crystal Structures of Methoxo-oxo[thenoyltrifluoroacetone-salicylhydrazonato(2–)]vanadium(V) and Methoxo-oxo[benzoylacetone-salicylhydrazonato(2–)]vanadium(V) The persistence of non-oxo vanadium(IV) complexes in dichlormethane/methanol/water solutions was studied by UV/VIS spectroscopy. The reaction products methoxo-oxo-[thenoyltrifluoroacetone-salicylhydrazonato(2–)]vanadium(V) and methoxo-oxo[benzoylacetone-salicylhydrazonato(2–)]vanadium(V) were isolated and characterized by X-ray analysis. The thermal behaviour of non-oxo vanadium(IV) complexes was checked.  相似文献   

14.
Mandal SK 《Talanta》1979,26(2):133-134
Vanadium(III) solutions can be used in direct titrations of iron(III), copper(II), thallium(III), molybdenum(VI), uranium(VI), vanadium(V), chromium(VI) and manganese(VII) in milligram amounts. The titrations are done at 70-80 degrees for iron(III), copper(II), thallium(III), molybdenum(VI) and at room temperature for vanadium(V), chromium(VI) and manganese(VII). Uranium(VI) is titrated at 70-80 degrees in presence of iron(II). The vanadium(III) solution is prepared by reduction of vanadium(V) to vanadium(IV) with sulphur dioxide, followed by addition of phosphoric acid and reduction with iodide, and is reasonably stable.  相似文献   

15.
An ion-chromatographic method, using a carbonate-buffered (1,2-cyclohexylenedinitrilo)tetraacetic acid (CDTA) eluant, is described for the simultaneous determination of vanadium(IV) and vanadium(V). Vanadium(IV) was, after pre-column complexation with CDTA, separated from vanadium(V) (as vanadate) by anion-exchange chromatography. The analytical range is 0.5 to 20 g/ml and 0.25 to 10 g/ml for vanadium(IV) and vanadium(V), respectively. Detection limits are estimated to be 145 and 70 ng/ml for vanadium(IV) and vanadium(V), respectively.  相似文献   

16.
The ionic state of vanadium(V) is studied spectrophotometrically over a wide range of sulfuric acid concentrations from 1.0 to 16.8 mol/l. Existence regions for monomeric and dimeric vanadium(V) complexes are determined. The equilibrium constant of vanadium(V) dimerization in 12 M H2SO4 is determined.  相似文献   

17.
The separation and preconcentration of vanadium (IV) and vanadium (V) using Sephadex DEAE A-25 with Eriochrome Cyanine R has been studied, based on the preconcentration of vanadium (IV) in the first step and V(V) after reduction with ascorbic acid in the second step. Factors affecting the optimum fixation of the complex were investigated. The absorbance of the solid phase is measured directly at 563 nm for V(IV), at 585 nm for V(V) and at 750 nm for both. The proposed method provides a simple and specific procedure for the separation of vanadium in natural waters. The calibration graph is linear up to 150 ng/mL, with RSD of 4.7% for V(IV) and 4.0% for V(V). The detection limits are 1.6 and 1.4 ng/mL for V(IV) and V(V), respectively. Received: 21 November 1996 / Revised: 15 April 1997 / Accepted: 18 April 1997  相似文献   

18.
Recent examples for synthesis and reaction chemistry with (imido)vanadium(V)‐alkyl, ‐alkylidene complexes have been briefly summarized. (Arylimido)vanadium(V) dichloride complexes especially containing aryloxo ligands exhibited notable activities for ethylene polymerization, and the reacition pathways for the polymerization/dimerization using (imido)vanadium(V) dichloride complexes containing (2‐anilidomethyl)pyridine ligands can be tuned by modification of the steric bulk in the imido substituents; the adamantylimido analogues exhibited exceptionally high both activity and selectivity in the dimerization. These vanadium(V)‐alkyl complexes showed unique reactivity toward phenols; the reaction proceeds via coordination of phenols to the vanadium. The vanadium(V)‐alkylidene complexes were generated by α‐hydrogen elimination from the dialkyl analogues in the presence of PMe3 etc.; the subsequent 1,2‐C‐H bond activation of benzene with (arylimido)vanadium(V)‐alkylidene containing 1,3‐(2′,6′‐diiso‐propylphenyl)imidazolin‐2‐iminato (ImDIPPN) ligand took place cleanly.  相似文献   

19.
Simple, high-yield, large-scale syntheses of the V(III) complexes tris(maltolato)vanadium(III), V(ma)3, tris(ethylmaltolato)vanadium(III), V(ema)3, tris(kojato)vanadium(III) monohydrate, V(koj)3-H2O, and tris(1,2-dimethyl-3-hydroxy-4-pyridinonato)vanadium(III) dodecahydrate, V(dpp)3-12H2O, are described; the characterization of these complexes by various methods and, in the case of V(dpp)3-12H2O, by an X-ray crystal structure determination, is reported. The ability of these complexes to normalize glucose levels in the STZ-diabetic rat model has been examined and compared with that of the benchmark compound BMOV (bis(maltolato)oxovanadium(IV)), an established insulin-enhancing agent.  相似文献   

20.
利用硫酸氧钒制备钒炭催化剂用于烟气脱硫。研究发现,负载在活性炭上的硫酸氧钒极易被氧化为五价钒硫酸盐,这些五价钒硫酸盐具有很高的氧化SO2的活性,极大地促进了SO2在活性炭上的脱除。而且,通过煅烧可以将五价钒硫酸盐分解为五价钒氧化物,最佳煅烧温度为500℃,由于煅烧后用于储存硫酸的微孔孔容增加,SO2的吸附容量得到了进一步提高,由此表明,利用硫酸氧钒可以制备传统的V2O5/AC催化剂。为了获得完全氧化的钒物种,对煅烧后的催化剂进行了空气中预氧化,但由于含氧官能团的形成、炭载体的烧蚀以及钒的还原,预氧化不利于脱硫。此外,研究中得到初步证据证明脱硫过程中V2O5/AC催化剂中五价钒氧化物转变成了五价钒硫酸盐,结合五价钒硫酸盐所表现出的氧化SO2的能力,推测SO2在V2O5/AC上的脱除遵循以下机理:五价钒氧化物先转变为五价钒硫酸盐,后者催化氧化SO2为硫酸。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号