首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An implicit method is developed for solving the complete three‐dimensional (3D) Navier–Stokes equations. The algorithm is based upon a staggered finite difference Crank‐Nicholson scheme on a Cartesian grid. A new top‐layer pressure treatment and a partial cell bottom treatment are introduced so that the 3D model is fully non‐hydrostatic and is free of any hydrostatic assumption. A domain decomposition method is used to segregate the resulting 3D matrix system into a series of two‐dimensional vertical plane problems, for each of which a block tri‐diagonal system can be directly solved for the unknown horizontal velocity. Numerical tests including linear standing waves, nonlinear sloshing motions, and progressive wave interactions with uneven bottoms are performed. It is found that the model is capable to simulate accurately a range of free‐surface flow problems using a very small number of vertical layers (e.g. two–four layers). The developed model is second‐order accuracy in time and space and is unconditionally stable; and it can be effectively used to model 3D surface wave motions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
To investigate the potential of the fourth‐order compact difference scheme within the specific context of numerical atmospheric models, a linear baroclinic adjustment system is discretized, using a variety of candidates for practically meaningful staggered 3D grids. A unified method is introduced to derive the dispersion relationship of the baroclinic geostrophic adjustment process. Eight popular 3D grids are obtained by combining contemporary horizontal staggered grids, such as the Arakawa C and Eliassen grids, with optimal vertical grids, such as the Lorenz and Charney‐Phillip (CP) grids, and their time‐staggered versions. The errors produced on the 3D grids in describing the baroclinic geostrophic adjustment process relative to the differential case are compared in terms of frequency and group velocity components with the elimination of implementation error. The results show that by utilizing the fourth‐order compact difference scheme with high precision, instead of the conventional second‐order centered difference scheme, the errors in describing baroclinic geostrophic adjustment process decrease but only when using the combinations of the horizontally staggered Arakawa C grid and the vertically staggered CP or the C/CP grid, the time‐horizontally staggered Eliassen (EL) grid and vertically staggered CP or the EL/CP grid, the C grid and the vertically time‐staggered versions of Lorenz (LTS) grid or C/LTS grid, EL grid and LTS grid or EL/LTS grid. The errors were found to increase for specific waves on the rest grids. It can be concluded that errors produced on the chosen 3D grids do not universally decrease when using the fourth‐order compact difference scheme; hence, care should be taken when implementing the fourth‐order compact difference scheme, otherwise, the expected benefits may be offset by increased errors. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A finite difference method is presented for solving the 3D Navier–Stokes equations in vorticity–velocity form. The method involves solving the vorticity transport equations in ‘curl‐form’ along with a set of Cauchy–Riemann type equations for the velocity. The equations are formulated in cylindrical co‐ordinates and discretized using a staggered grid arrangement. The discretized Cauchy–Riemann type equations are overdetermined and their solution is accomplished by employing a conjugate gradient method on the normal equations. The vorticity transport equations are solved in time using a semi‐implicit Crank–Nicolson/Adams–Bashforth scheme combined with a second‐order accurate spatial discretization scheme. Special emphasis is put on the treatment of the polar singularity. Numerical results of axisymmetric as well as non‐axisymmetric flows in a pipe and in a closed cylinder are presented. Comparison with measurements are carried out for the axisymmetric flow cases. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
A new approach is proposed for constructing a fully explicit third‐order mass‐conservative semi‐Lagrangian scheme for simulating the shallow‐water equations on an equiangular cubed‐sphere grid. State variables are staggered with velocity components stored pointwise at nodal points and mass variables stored as element averages. In order to advance the state variables in time, we first apply an explicit multi‐step time‐stepping scheme to update the velocity components and then use a semi‐Lagrangian advection scheme to update the height field and tracer variables. This procedure is chosen to ensure consistency between dry air mass and tracers, which is particularly important in many atmospheric chemistry applications. The resulting scheme is shown to be competitive with many existing numerical methods on a suite of standard test cases and demonstrates slightly improved performance over other high‐order finite‐volume models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
We recently proposed an improved (9,5) higher order compact (HOC) scheme for the unsteady two‐dimensional (2‐D) convection–diffusion equations. Because of using only five points at the current time level in the discretization procedure, the scheme was seen to be computationally more efficient than its predecessors. It was also seen to capture very accurately the solution of the unsteady 2‐D Navier–Stokes (N–S) equations for incompressible viscous flows in the stream function–vorticity (ψ – ω) formulation. In this paper, we extend the scope of the scheme for solving the unsteady incompressible N–S equations based on primitive variable formulation on a collocated grid. The parabolic momentum equations are solved for the velocity field by a time‐marching strategy and the pressure is obtained by discretizing the elliptic pressure Poisson equation by the steady‐state form of the (9,5) scheme with the Neumann boundary conditions. In particular, for pressure, we adopt a strategy on the collocated grid in conjunction with ideas borrowed from the staggered grid approach in finite volume. We first apply this extension to a problem having analytical solution and then to the famous lid‐driven square cavity problem. We also apply our formulation to the backward‐facing step problem to see how the method performs for external flow problems. The results are presented and are compared with established numerical results. This new approach is seen to produce excellent comparison in all the cases. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
A high‐order compact finite‐difference lattice Boltzmann method (CFDLBM) is proposed and applied to accurately compute steady and unsteady incompressible flows. Herein, the spatial derivatives in the lattice Boltzmann equation are discretized by using the fourth‐order compact FD scheme, and the temporal term is discretized with the fourth‐order Runge–Kutta scheme to provide an accurate and efficient incompressible flow solver. A high‐order spectral‐type low‐pass compact filter is used to stabilize the numerical solution. An iterative initialization procedure is presented and applied to generate consistent initial conditions for the simulation of unsteady flows. A sensitivity study is also conducted to evaluate the effects of grid size, filtering, and procedure of boundary conditions implementation on accuracy and convergence rate of the solution. The accuracy and efficiency of the proposed solution procedure based on the CFDLBM method are also examined by comparison with the classical LBM for different flow conditions. Two test cases considered herein for validating the results of the incompressible steady flows are a two‐dimensional (2‐D) backward‐facing step and a 2‐D cavity at different Reynolds numbers. Results of these steady solutions computed by the CFDLBM are thoroughly compared with those of a compact FD Navier–Stokes flow solver. Three other test cases, namely, a 2‐D Couette flow, the Taylor's vortex problem, and the doubly periodic shear layers, are simulated to investigate the accuracy of the proposed scheme in solving unsteady incompressible flows. Results obtained for these test cases are in good agreement with the analytical solutions and also with the available numerical and experimental results. The study shows that the present solution methodology is robust, efficient, and accurate for solving steady and unsteady incompressible flow problems even at high Reynolds numbers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The effect of wavelength and relative velocity on the disturbed interface of two‐phase stratified regime is modeled and discussed. To analyze the stability, a small perturbation is imposed on the interface. Growth or decline of the disturbed wave, relative velocity, and surface tension with respect to time will be discussed numerically. Newly developed scheme applied to a two‐dimensional flow field and the governing Navier–Stokes equations in laminar regime are solved. Finite volume method together with non‐staggered curvilinear grid is a very effective approach to capture interface shape with time. Because of the interface shape, for any time advancement, a new grid is performed separately on each stratified field, liquid, and gas regime. The results are compared with the analytical characteristics method and one‐dimensional modeling. This comparison shows that solving the momentum equation including viscosity term leads to physically more realistic results. In addition, the newly developed method is capable of predicting two‐phase stratified flow behavior more precisely than one‐dimensional modeling. It was perceived that the surface tension has an inevitable role in dissipation of interface instability and convergence of the two‐phase flow model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
It is well known that exact projection methods (EPM) on non‐staggered grids suffer for the presence of non‐solenoidal spurious modes. Hence, a formulation for simulating time‐dependent incompressible flows while allowing the discrete continuity equation to be satisfied up to machine‐accuracy, by using a Finite Volume‐based second‐order accurate projection method on non‐staggered and non‐uniform 3D grids, is illustrated. The procedure exploits the Helmholtz–Hodge decomposition theorem for deriving an additional velocity field that enforces the discrete continuity without altering the vorticity field. This is accomplished by first solving an elliptic equation on a compact stencil that is by performing a standard approximate projection method (APM). In such a way, three sets of divergence‐free normal‐to‐face velocities can be computed. Then, a second elliptic equation for a scalar field is derived by prescribing that its additional discrete gradient ensures the continuity constraint based on the adopted linear interpolation of the velocity. Characteristics of the double projection method (DPM) are illustrated in details and stability and accuracy of the method are addressed. The resulting numerical scheme is then applied to laminar buoyancy‐driven flows and is proved to be stable and efficient. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
A new numerical method that couples the incompressible Navier–Stokes equations with the global mass correction level‐set method for simulating fluid problems with free surfaces and interfaces is presented in this paper. The finite volume method is used to discretize Navier–Stokes equations with the two‐step projection method on a staggered Cartesian grid. The free‐surface flow problem is solved on a fixed grid in which the free surface is captured by the zero level set. Mass conservation is improved significantly by applying a global mass correction scheme, in a novel combination with third‐order essentially non‐oscillatory schemes and a five stage Runge–Kutta method, to accomplish advection and re‐distancing of the level‐set function. The coupled solver is applied to simulate interface change and flow field in four benchmark test cases: (1) shear flow; (2) dam break; (3) travelling and reflection of solitary wave and (4) solitary wave over a submerged object. The computational results are in excellent agreement with theoretical predictions, experimental data and previous numerical simulations using a RANS‐VOF method. The simulations reveal some interesting free‐surface phenomena such as the free‐surface vortices, air entrapment and wave deformation over a submerged object. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A multi‐layer hybrid grid method is constructed to simulate complex flow field around 2‐D and 3‐D configuration. The method combines Cartesian grids with structured grids and triangular meshes to provide great flexibility in discretizing a domain. We generate the body‐fitted structured grids near the wall surface and the Cartesian grids for the far field. In addition, we regard the triangular meshes as an adhesive to link each grid part. Coupled with a tree data structure, the Cartesian grid is generated automatically through a cell‐cutting algorithm. The grid merging methodology is discussed, which can smooth hybrid grids and improve the quality of the grids. A cell‐centred finite volume flow solver has been developed in combination with a dual‐time stepping scheme. The flow solver supports arbitrary control volume cells. Both inviscid and viscous flows are computed by solving the Euler and Navier–Stokes equations. The above methods and algorithms have been validated on some test cases. Computed results are presented and compared with experimental data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
A third‐order mesh generation and adaptation method is presented for solving the steady compressible Euler equations. For interior points, a third‐order scheme is used on Cartesian and curvilinear meshes. Concerning the mesh adaptation, the method of Meakin is also extended to third order. The accuracy of the new overset mesh adaptation method is demonstrated by a grid convergence study for 2‐D inviscid model problems and results are compared with a second‐order method. Finally, the method is applied to the computation of an inviscid 3‐D flow around a hovering blade of the ONERA 7A helicopter rotor exhibiting an improvement in the wake capture. With a 7 million point mesh, the tip vortex can be followed for more than three rotor revolutions with the third‐order method. The CPU time needed for this calculation is only 3% higher than with a conventional second‐order method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
This paper uses a fourth‐order compact finite‐difference scheme for solving steady incompressible flows. The high‐order compact method applied is an alternating direction implicit operator scheme, which has been used by Ekaterinaris for computing two‐dimensional compressible flows. Herein, this numerical scheme is efficiently implemented to solve the incompressible Navier–Stokes equations in the primitive variables formulation using the artificial compressibility method. For space discretizing the convective fluxes, fourth‐order centered spatial accuracy of the implicit operators is efficiently obtained by performing compact space differentiation in which the method uses block‐tridiagonal matrix inversions. To stabilize the numerical solution, numerical dissipation terms and/or filters are used. In this study, the high‐order compact implicit operator scheme is also extended for computing three‐dimensional incompressible flows. The accuracy and efficiency of this high‐order compact method are demonstrated for different incompressible flow problems. A sensitivity study is also conducted to evaluate the effects of grid resolution and pseudocompressibility parameter on accuracy and convergence rate of the solution. The effects of filtering and numerical dissipation on the solution are also investigated. Test cases considered herein for validating the results are incompressible flows in a 2‐D backward facing step, a 2‐D cavity and a 3‐D cavity at different flow conditions. Results obtained for these cases are in good agreement with the available numerical and experimental results. The study shows that the scheme is robust, efficient and accurate for solving incompressible flow problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This paper makes the first attempt of extending implicit AUSM‐family schemes to multiphase flow simulations. Water faucet, air–water shock tube and oscillating manometer problems are used as benchmark tests with the generic four‐equation two‐fluid model. For solving the equations implicitly, Newton's method along with a sparse matrix solver (UMFPACK solver) is employed, and the numerical Jacobian matrix is calculated. Comparison between implicit and explicit AUSM‐family schemes is presented, indicating that similarly accurate results are obtained with both schemes. Furthermore, the water faucet problem is solved using both staggered and collocated grids. This investigation helps integrate high‐resolution schemes into staggered‐grid‐based computational algorithms. The influence of the interface pressure correction on the simulation results is also examined. Results show that the interfacial pressure correction introduces numerical dissipation. However, this dissipation cannot eliminate the overshoots because of the incompatibility of numerical discretization of the conservative and non‐conservative terms in the governing equations. The comparison of CPU time between implicit and explicit schemes is also studied, indicating that the implicit scheme is capable of improving the computational efficiency over its explicit counterpart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Third‐order and fifth‐order upwind compact finite difference schemes based on flux‐difference splitting are proposed for solving the incompressible Navier–Stokes equations in conjunction with the artificial compressibility (AC) method. Since the governing equations in the AC method are hyperbolic, flux‐difference splitting (FDS) originally developed for the compressible Euler equations can be used. In the present upwind compact schemes, the split derivatives for the convective terms at grid points are linked to the differences of split fluxes between neighboring grid points, and these differences are computed by using FDS. The viscous terms are approximated with a sixth‐order central compact scheme. Comparisons with 2D benchmark solutions demonstrate that the present compact schemes are simple, efficient, and high‐order accurate. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A new method for computing the fluid flow in complex geometries using highly non‐smooth and non‐orthogonal staggered grid is presented. In a context of the SIMPLE algorithm, pressure and physical tangential velocity components are used as dependent variables in momentum equations. To reduce the sensitivity of the curvature terms in response to coordinate line orientation change, these terms are exclusively computed using Cartesian velocity components in momentum equations. The method is then used to solve some fairly complicated 2‐D and 3‐D flow field using highly non‐smooth grids. The accuracy of results on rough grids (with sharp grid line orientation change and non‐uniformity) was found to be high and the agreement with previous experimental and numerical results was quite good. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A vertically integrated non‐linear dispersive wave model is expressed in non‐orthogonal curvilinear co‐ordinate system for simulating shallow or deep water wave motions in regions of arbitrary geometry. Both dependent and independent variables are transformed so that an irregular physical domain is converted into a rectangular computational domain with contravariant velocities. Thus, the wall condition for enclosures surrounding a typical physical domain, such as a channel, port or harbor, is satisfied accurately and easily. The numerical scheme is based on staggered grid finite‐difference approximations, which result in implicit formulations for the momentum equations and semi‐explicit formulation for the continuity equation. Test cases of linear wave propagation in converging, diverging and circular channels are performed to check the reliability of model simulations against the analytical solutions. Cnoidal waves of different steepness values in a circular channel are also considered as examples to non‐linear wave propagation within curved walls. In closing, remarks concerning versatility and practical uses of the numerical model are made. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
A novel numerical procedure for heat, mass and momentum transfer in fluid flow is presented. The new scheme is passed on a non‐upwind, interconnected, multi‐grid, overlapping (NIMO) finite‐difference algorithm. In 2D flows, the NIMO algorithm solves finite‐difference equations for each dependent variable on four overlapping grids. The finite‐difference equations are formulated using the control‐volume approach, such that no interpolations are needed for computing the convective fluxes. For a particular dependent variable, four fields of values are produced. The NIMO numerical procedure is tested against the exact solution of two test problems. The first test problem is an oblique laminar 2D flow with a double step abrupt change in a passive scalar variable for infinite Peclet number. The second test problem is a rotating radial flow in an annular sector with a single step abrupt change in a passive scalar variable for infinite Peclet number. The NIMO scheme produced essentially the exact solution using different uniform and non‐uniform square and rectangular grids for 45 and 30° angle of inclination. All other schemes were unable to capture the exact solution, especially for the rectangular and non‐uniform grids. The NIMO scheme was also successful in predicting the exact solution for the rotating radial flow, using a uniform cylindrical‐polar coordinate grid. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A non‐dissipative and very accurate one‐dimensional upwind leapfrog method was successfully extended to higher‐order and multi‐dimensional acoustic equations. The governing equations in characteristic form and staggered grid were utilized to preserve the accuracy. Fourier analysis was performed to find the accurate scheme for acoustics and the resultant two‐dimensional methods were successfully applied to several classical test cases. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Analysis of surface water flows is of central importance in understanding and predicting a wide range of water engineering issues. Dynamics of surface water is reasonably well described using the shallow water equations (SWEs) with the hydrostatic pressure assumption. The SWEs are nonlinear hyperbolic partial differential equations that are in general required to be solved numerically. Application of a simple and efficient numerical model is desirable for solving the SWEs in practical problems. This study develops a new numerical model of the depth‐averaged horizontally 2D SWEs referred to as 2D finite element/volume method (2D FEVM) model. The continuity equation is solved with the conforming, standard Galerkin FEM scheme and momentum equations with an upwind, cell‐centered finite volume method scheme, utilizing the water surface elevation and the line discharges as unknowns aligned in a staggered manner. The 2D FEVM model relies on neither Riemann solvers nor high‐resolution algorithms in order to serve as a simple numerical model. Water at a rest state is exactly preserved in the model. A fully explicit temporal integration is achieved in the model using an efficient approximate matrix inversion method. A series of test problems, containing three benchmark problems and three experiments of transcritical flows, are carried out to assess accuracy and versatility of the model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号