首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A new series of quinazolinones containing hydrazone moiety were synthesized, and their inhibitory activities on urease were assessed in vitro. Most of the compounds exhibited potent urease inhibitory activity. Among the synthesized compounds, molecule 4a bearing furan ring has the best inhibitory effect against urease with IC50 = 2.90 ± 0.11 μg/mL. Compounds 4f , 4g , 4h , 4i , and 4j have hydroxy group on phenyl ring. Compound 4i is the most active inhibitor among these compounds with IC50 = 5.01 ± 0.10 μg/mL, which has 3‐Cl and 4‐Br on phenyl ring. Also, newly synthesized compounds had been tested for their antimicrobial effects against three of Gram‐positive bacteria (Bacillus cereus 702 Roma, Staphylococcus aureus ATCC 25923, and Streptococcus pyogenes ATCC 19615) and three of Gram‐negative bacteria (Escherichia coli ATCC 25922, Proteus vulgaris ATCC 13315, and Pseudomonas aeruginosa ATCC 27853). Antimicrobial activity results show that compounds 4a , 4h , 4j , 4f , and 4l have the lowest minimum inhibitory concentration (MIC) value of 1000 μg/mL to all tested bacteria. The other compounds have the MIC value of >1000 μg/mL to all tested bacteria.  相似文献   

2.
A new series of 3‐(arylaminomethyl)‐5‐(5‐methyl‐1‐phenyl‐1H‐4‐pyrazolyl)‐2,3‐dihydro‐1,3,4‐oxadiazole‐2‐thiones 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j has been synthesized by the reaction of 5‐(5‐methyl‐1‐phenyl‐1H‐4‐pyrazolyl)‐1,3,4‐oxadiazol‐2‐ylhydrosulfide 5 with formaldehyde and corresponding anilines. The chemical structures of newly synthesized compounds were elucidated by IR, 1H, 13C‐NMR, MS, and elemental analyses. The compounds 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j were evaluated for their antibacterial activity against three representative Gram positive bacteria viz. Bacillus subtilis (MTCC 441), Bacillus sphaericus (MTCC 11) and Staphylococcus aureus (MTCC 96), and three Gram negative bacteria viz. Pseudomonas aeruginosa (MTCC 741), Klobsinella aerogenes (MTCC 39) and Chromobacterium violaceum. Among the screened 6b , 6d , 6i , and 6j in which oxadiazole moiety bearing 4‐fluoroanilinomethyl, 4‐chloroanilinomethyl, 2‐trifluoromethylanilinomethyl, and 2,5‐difluoroanilinomethyl groups, respectively, showed high activity against all the microorganisms used. In addition these compounds were also screened for their antifungal activity against four fungal organisms viz. Candida albicans (ATCC 10231), Aspergillus fumigatus (HIC 6094), Trichophyton rubrum (IFO 9185), and Trichophyton mentagrophytes (IFO 40996). Most of these new compounds showed appreciable activity against test fungi, and emerged as potential molecules for further development.  相似文献   

3.
The synthesis of some 3‐(4‐aryl‐benzofuro[3,2‐b]pyridin‐2‐yl)coumarins 3a–r has been carried out by the reaction of 3‐coumarinoyl methyl pyridinium salts 1a–c with 2‐arylidene aurones 2a–f in the presence of ammonium acetate and acetic acid under Kröhnke's reaction conditions. All the synthesized compounds were characterized by analytical and spectral data. They have been screened for their antibacterial activity against Escherichia coli (ATCC 25922) as Gram‐negative bacteria, Bacillus subtillis (ATCC 1633) as Gram‐positive bacteria and antifungal activity against Aspergillus niger (ATCC 9029).  相似文献   

4.
A novel series of (4‐fluorophenyl)(4‐(naphthalen‐2‐yl)‐6‐aryl‐2‐thioxo‐2,3‐dihydropyrimidin‐1(6H)‐yl)methanone derivatives were synthesized from reaction of 6‐(naphthalen‐2‐yl)‐4‐aryl‐3,4‐dihydropyrimidine‐2(1H)‐thiones with 4‐fluorobenzoylchloride in dichloromethane in the presence of triethylamine. The synthesized compounds were screened for antibacterial activity against Gram positive bacteria, namely, Staphylococcus aureus ATCC25923 and Listeria monocytogenes MTCC657, and Gram negative bacteria, namely, Escherichia coli ATCC25922 and Klebsiella pneumoniae ATCC700603, respectively. Some of the tested compounds showed significant antimicrobial activity.  相似文献   

5.
A novel series of 4‐(4‐(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)phenyl)‐2‐substitutedthiazole derivatives ( 8a‐l) have been synthesized by [3 + 2] cycloaddition reaction of 4‐(4‐ethynylphenyl)‐2‐substitutedthiazole with substituted benzyl azide in aqueous DMF. Starting compounds 4‐(4‐ethynylphenyl)‐2‐substitutedthiazole ( 6a‐d ) were synthesized by reaction of 4‐(2‐substitutedthiazol‐4‐yl)benzaldehyde with Ohira‐Bestmann reagent in methanol. The structures of these novel triazole‐thiazole clubbed derivatives were confirmed by the spectral analysis. The title compounds ( 8a‐l ) were tested for antimycobacterial activity against Mycobacterium tuberculosis H37Ra active and dormant (MTB, ATCC 25177) and antimicrobial activity against standard Gram‐positive bacteria, Staphylococcus aureus (NCIM 2602) and Bacillus subtilis (NCIM 2162), and Gram‐negative bacteria, Escherichia coli (NCIM 2576) and Pseudomonas flurescence (NCIM 2059). Compounds 8a , 8b , 8c , and 8h reported good activity against B subtilis, compounds 8a , 8b , and 8c showed good activity against S aureus, and compound 8b showed good activity against dormant M tuberculosis H37Rv strain. Compounds 8b and 8c found more potent against Gram positive and dormant M tuberculosis H37Rv strains. These novel triazole‐thiazole clubbed analogues found to be a capable leads for further optimization and development.  相似文献   

6.
In this study, we have synthesized 1‐(4,6‐disubstitutedpyrimidin‐2‐yl)‐3‐(3,5‐dinitrobenzoyl)‐thiourea derivatives ( 1a , 1b , 1c , 1d , 1e , 1f , 1g , 1h ) and N‐[(2Z)‐3‐(4,6‐disubstitutedpyrimidin‐2‐yl)‐4‐phenyl‐1,3‐thiazol‐2(3H)‐ylidene]‐3, 5‐dinitrobenzamide ( 2a‐2h ) analogues and characterized by IR spectroscopy, NMR spectroscopy, elemental analysis, and single crystal X‐ray diffraction data. The compounds ( 2a‐2h ) were screened for antimicrobial activity against Gram positive, Gram negative, and fungal species. The results of antimicrobial study indicated that compounds showed most potential and appreciable antibacterial and antifungal activities.  相似文献   

7.
A series of novel N‐((l‐benzyl‐lH‐l,2,3‐triazol‐5‐yl) methyl)‐4‐(6‐methoxy benzo[d ]thiazol‐2‐yl)‐2‐nitrobenzamide derivatives were prepared from 4‐(6‐methoxybenzo[d ]thiazol‐2‐yl)‐2‐nitro‐N‐(prop‐2‐ynyl) benzamide with benzyl azides by using click reaction (copper‐catalyzed Huisgen 1,3‐dipolar cycloaddition reaction) in the presence of CuSO4.5H2O and sodium ascaorbate. All the newly synthesized compounds were evaluated further in vitro antimicrobial activity against Gram‐positive bacteria (Staphylococcus aureus and Bacillus subtillis ), Gram‐negative bacteria (Echerichia coli and Pseudomonas aeuroginosa ), and fungi (Aspergillus niger and Aspergillusfumigatus ) strains. The new compounds were characterized based on spectroscopic evidence. Among them compounds 10a , 10h , and 10i were showed promising activity when compared with standard drugs Ciprofloxacin and Miconazole.  相似文献   

8.
A simple environmentally friendly solid‐phase microwave‐assisted method was used to synthesis of the 1,3′‐diazaflavanone ( 2 ) and 1,3′‐diazaflavone ( 3 ) from the cyclization of 2′‐amino (E)‐3″‐azachalcone ( 1 ). Ten new N‐alkyl (C5–12,14,15)‐substituted 1,3′‐diazaflavanonium bromides ( 2a–j ) were prepared from compound 2 with corresponding alkyl halides in acetonitrile under reflux. In addition, nine new N,N′‐dialkyl (C5–12,14)‐substituted 1,3′‐diazaflavonium bromides ( 3a–i ) were also synthesized from compound 3 with corresponding alkyl halides using basic silica in acetonitrile. The antimicrobial activities of compounds 1–3 , 2a–j , and 3a–i were tested against Gram‐positive (G+) (Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus aureus, and Enterococcus faecalis) and Gram‐negative (G?) (Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella typhimirium, Yersinia pseudotuberculosis, and Enterobacter cloaceae) microorganisms. They showed good antimicrobial activity against the Gram‐positive bacteria tested with the minimal inhibitory concentration values less than 7.8 μg/mL in most cases. The optimum length of the alkyl chain for better and broader activity is situated in the range of 9–12 carbon atoms in the series of compounds 2a–j and five to six carbon atoms in the series of compounds 3a–i . The nonalkylated compounds 1–3 were not effective, as were the ones alkylated with five or six C alkyl groups ( 2a and 2b ) and 8–13 C alkyl groups for N,N′‐dialkyl compounds ( 3c–3i ). The antimicrobial activity increased as the length of the alkyl substitution increased from 8 to 12 carbons in compounds 2a–j . However, antimicrobial activity decreased as the length of the alkyl substitution increased from 7 to 13 carbons in compounds 3c–i . J. Heterocyclic Chem., (2012)  相似文献   

9.
A series of novel racemic 2‐(1,3‐diaryl‐3‐hydroxypropyl)cyclohexan‐1‐ol derivatives were synthesized from 1,5‐diketones. All the synthesized compounds were characterized by spectroscopic methods. The antibacterial activities of obtained chiral 1,5‐diols were investigated against four Gram‐positive and three Gram‐negative bacteria by determining of minimum inhibitory concentrations (MICs) in vitro. Compounds 3b , 3c , and 3d were found to be active against Enterococcus faecalis and Escherichia coli. In addition, compound 3j were found to be moderately active against all tested bacterial strains.  相似文献   

10.
A series of novel ethyl 4‐(methyl or trifluoromethyl)‐2‐(2‐(substituted phenoxy)acetamido)thiazole‐5‐carboxylates 7a , 7b , 7c , 7d , 7e and 8f , 8g , 8h , 8i , 8j , 8k , 8l , 8m , 8n , 8o , 8p , 8q , 8r were synthesized, and their structures were confirmed by IR, 1H‐NMR, MS spectra and elemental analysis. The results of preliminary bioassays show that some of the title compounds exhibit moderate to good herbicidal activities. Compared with the fluorine free compounds 7a , 7b , and 7e , the compounds bearing fluorine 8g , 8j , and 8q showed higher herbicidal activities with 70–100% inhibition against Capsella bursa‐pastoris, Amaranthus restroflexus, and Eclipta prostrata at the dosage of 150 g/ha, which indicated that the trifluoromethyl on the thiazole ring was beneficial for the herbicidal activity. Furthermore, compounds 8f , 8g , 8h , 8i , 8j , 8k , 8l , 8m , 8n , 8o , 8p , 8q , 8r were tested for fungicidal activity against Pseudoperonospora cubensis at 500 µg/mL. Compounds 8f and 8q showed the best fungicidal activity with more than 80% inhibition.  相似文献   

11.
A series of novel 6‐2‐methoxy‐5‐[4‐methoxy‐3‐(3‐aryl[1,2,4]triazolo[3,4‐b][1,3,4]oxadiazol‐6‐yl)benzyl]phenyl‐3‐aryl[1,2,4]triazolo[3,4‐b][1,3,4]oxadiazoles 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i , 7j has been synthesized and characterized via IR, 1H NMR, 13C NMR, MS, and elemental analyses. Compounds 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i , 7j were also screened for their antibacterial activity against Gram‐positive bacteria viz. Bacillus subtilis (MTCC 441), Bacillus sphaericus (MTCC 11), and Staphylococcus aureus (MTCC 96), and Gram‐negative bacteria viz. Pseudomonas aeruginosa (MTCC 741), Klobsinella aerogenes (MTCC 39), and Chromobacterium violaceum (MTCC 2656). The antibacterial screening reveal that the presence of 2,4‐difluorophenyl ( 7e ) or 4‐nitrophenyl ( 7f ) of 2‐pyrazyl ( 7i ), or 2‐furyl ( 7j ) on the triazole moiety exhibited potent inhibitory activity comparable with the standard drug streptomycin, at the tested concentrations, and emerged as potential molecules for further development.  相似文献   

12.
1,3‐Dipolar cycloaddition reactions of N‐cyclohexyl maleimide ( 1 ) with azomethine N‐oxide ( 2 ) have afforded novel isoxazolidine ( 3 ) in excellent yield. Their structures have been characterized from their IR, 1H‐NMR, 13C‐NMR, 1H,1H‐COSY, MS(ESI), and elemental analysis techniques. In vitro antibacterial activity of the synthesized compounds were investigated against a representative panel of pathogenic strains specifically two Gram‐positive bacteria (Staphylococcus aureus and Streptococcus pyogenes ) and two Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli ) using agar‐well diffusion assay. Some of the compounds ( 3a , 3k , 3n , and 3o ) exhibited promising antibacterial activities. All the synthesized compounds have also been screened for their antioxidant activities and were found to be significantly active.  相似文献   

13.
A new series of 1‐(5‐(benzylsulfinyl)‐3‐methyl‐1,3,4‐thiadiazol‐2(3H)‐ylidene)‐thiourea/urea derivatives ( 1a – j ) were designed and synthesized. For the first time, (i) a new process was developed for N‐methylation of 1,3,4‐thiadiazole moiety using dimethyl carbonate an environmentally benign reagent in presence of N,N,N′,N‐tetramethylethylenediamine and (ii) the sulfide was selectively oxidized to sulfoxide in higher yield by using chlorine (g) in aqueous acetic acid media under mild reaction condition. The synthesized compounds ( 1a – j ) were investigated for their antimicrobial activities. The tested compounds ( 1a – j ) were exhibited moderate to excellent antibacterial activities against both Gram‐positive and Gram‐negative bacterial strains. The same compounds exhibited good antifungal activities against selected fungal strains. Particularly, the compounds 1b , 1d , 1h , and 1i were proved to be promising leads exhibiting both antibacterial and antifungal activities compared with standard drugs, ciprofloxacin, and fluconazole. The presence of 1,3,4‐thiadiazole moiety has a significant role in the display of antimicrobial activity. In addition, the presence of both sulfinyl and thiourea or urea functionalities has enhanced the activity as per obtained antimicrobial activity data.  相似文献   

14.
A total of 17 new N‐substituted derivatives ( 2b , 2c , 2d , 2e , 2f , 2g , 2h , 2i , 2j , 2k and 3b , 3c , 3d , 3e , 3f , 3g , 3h ) of 5‐((2‐phenylthiazol‐4‐yl)methylene) thiazolidine‐2,4‐dione ( 2a ) and 5‐(2,6‐dichloro‐ benzylidene)thiazolidine‐2,4‐dione ( 3a ) were synthesized. The structural elucidation of the newly synthesized compounds was based on elemental analysis and spectroscopic data (MS, 1H NMR, 13C NMR), and their antimicrobial activities were assessed in vitro against several strains of Gram‐positive and Gram‐negative bacteria and one fungal strain (Candida albicans) as growth inhibition diameter. Some of them showed modest to good antibacterial activity against Gram‐negative Escherichia coli and Salmonella typhimurium and Gram‐positive Staphylococcus aureus, Bacillus cereus, and Enterococcus fecalis bacterial strains, whereas almost all the compounds were inactive against Listeria monocytogenes. All of the synthesized compounds showed moderate to very good activity against C. albicans.  相似文献   

15.
A new type of benzo­thia­zolinone derivative with potential pharmacological activity, viz. 6‐(3,4‐di­fluoro­benzoyl)‐3‐[2‐(4‐pyridyl)­ethyl]‐1,3‐benzo­thia­zol‐2(3H)‐one, C21H14F2N2O2S, has been prepared and studied by NMR, IR and single‐crystal X‐ray diffraction techniques. The mol­ecule is not planar, the pyridine and di­fluoro­benzene moieties being located above and below the benzo­thia­zole ring system. The carbonyl O atoms are involved in an intramolecular hydrogen‐bond‐type interaction.  相似文献   

16.
The title compounds, 7‐aryl‐5,6‐dihydro‐14‐aza[1]benzopyrano[3,4‐b]phenanthren‐8H‐ones 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l have been synthesized by reacting various 4‐hydroxy coumarins 1a , 1b , 1c with 2‐arylidene‐1‐tetralones 2a , 2b , 2c , 2d in the presence of ammonium acetate and acetic acid under Krohnke's reaction condition. The structures of all the synthesized compounds were supported by analytical, IR, 1H‐NMR, and 13C‐NMR data. All the synthesized compounds 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l have been screened for their antibacterial activities against Escherichia coli (Gram ?ve bacteria), Bacillus subtilis (Gram +ve bacteria), and antifungal activity against Candida albicans (Fungi). J. Heterocyclic Chem., (2011).  相似文献   

17.
Synthesis of a series of new 4‐substituted‐3‐aryl‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazoles ( 2a , 2b , 2c , 2d , 2e , 2f , 2g , 3a , 3b , 3c , 3d , 3e , 3f , 3g , and 4a , 4b , 4c , 4d , 4e , 4f , 4g ) is described. All the synthesized compounds were evaluated in vitro for their antibacterial activity against two gram‐positive and two gram‐negative bacteria, namely, Bacillus subtilis (MTCC 8509), Bacillus stearothermophilus (MTCC 8508), Escherichia coli (MTCC 51), and Pseudomonas putida (MTCC 121), and their activity was compared with two commercial antibiotics, streptomycin and chloramphenicol. Two compounds, namely, 3‐(4‐anisyl)‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2b ) and 3‐(2‐thienyl)‐1‐(2,6‐dimethyl pyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2g ) were found to be equipotent to streptomycin and chloramphenicol against gram‐negative bacteria, E. coli having minimum inhibitory concentration (MIC) value = 4 μg/mL. Compounds 4b and 4d also displayed good activity against E. coli with MIC = 8 μg/mL. J. Heterocyclic Chem., (2011).  相似文献   

18.
A novel series of 2‐(5‐(4‐(1H‐benzo[d][1,2,3]triazol‐1‐yl)phenyl)‐4,5‐dihydro‐1H‐pyrazol‐3‐yl)phenols derivative has been synthesized from (E)‐3‐(4‐(1H‐benzo[d][1,2,3]triazol‐1‐yl)phenyl)‐1‐(2‐hydroxyphenyl)prop‐2‐en‐1‐ones in ethanol and hydrazine hydrate under reflux condition. The synthesized compounds were screened for antibacterial activity against Gram‐positive bacteria viz Staphylococcus aureus and Bacillus subtilis and Gram‐negative bacteria viz Escherichia coli and Salmonella typhi, respectively. Some of the tested compounds showed significant antimicrobial activity. IR, 1H NMR, mass spectral data, and elemental analysis elucidated the structures of all the newly synthesized compounds.  相似文献   

19.
<正>A series of some new 2-imino-5-[(Z)-1-(4-methylphenyl)methylidene]-3-[5-(2-oxo-2H-3-chromenyl)-1,3-oxazol-2-yl]-1,3- thiazolan-4-ones 5a-j has been synthesized and assayed for their antibacterial activity against Gram-positive bacteria viz.Bacillus subtilis(ATCC 6633),Staphylococcus aureus(ATCC 6538p) and Micrococcus luteus(IFC 12708),and Gram-negative bacteria viz. Proteus vulgaris(ATCC 3851).Salmonella typhimurium(ATCC 14028) and Escherichia coli(ATCC 25922).Among the screened compounds,5d,5e,5f,5g,and 5j exhibited potent inhibitory activity compared to standard drug,and emerged as potential molecules for further development.  相似文献   

20.
Imidazo[4,5‐c ]pyrazole derivatives ( 3a–f , 4a–f , and 5a–f ) were efficiently synthesized by one‐pot three‐component reactions using CeO2–MgO as the catalyst. The synthesized compounds were characterized by IR, 1H NMR, 13C NMR, and mass spectroscopic analyses. The in vitro antimicrobial activity of the synthesized compounds against various bacterial and fungal strains was screened. Compound 3b was highly active [minimum inhibitory concentration (MIC): 0.5 μg/mL] against Gram‐positive Staphylococcus aureus , and compounds 3b , 3f , 4d , and 4e were highly active (MIC: 0.5, 2, 2, and 0.5 μg/mL, respectively) against Gram‐negative Pseudomonas aeruginosa and Klebsiella pneumoniae , relative to standard ciprofloxacin in the antibacterial activity screening. Compounds 3b and 4f were highly active (MIC: 4 and 0.5 μg/mL, respectively) against Aspergillus fumigatus and Microsporum audouinii in the antifungal activity screening compared with the clotrimazole standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号