首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 858 毫秒
1.
A series of novel 3‐methyl‐N"‐(2‐oxoindolin‐3‐ylidene)‐4H‐benzo[b][1,4]thiazine‐2‐carbohyrazides have been synthesized and studied on their in vitro antimicrobial activity potency to establish structure‐activity relationship. Several compounds demonstrated promising antifungal and antibacterial activity; however, other tested compounds exhibited moderate to poor antimicrobial activity with respect to the reference drug against the test strains.  相似文献   

2.
A series of new 1,3,4‐oxadiazole/thiadiazole and 1,2,4‐triazole derivatives have been synthesized starting from 2‐aryl‐4‐methylthiazol‐5‐carbohydrazides and isonicotinic acid hydrazide. All the newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR, and mass spectrometry. The synthesized compounds were screened for their antibacterial and antifungal activity, assessed as growth inhibition diameter. Some of them showed good antibacterial activity against gram positive Staphylococcus aureus, while the antibacterial activity against Listeria monocytogenes, Escherichia coli, and Salmonella typhymurium and antifungal activity against Candida albicans was modest. None of the tested compounds showed inhibitory activity against gram positive bacteria Enterococcus faecalis and Bacillus cereus and against gram negative bacteria Pseudomonas aeruginosa.  相似文献   

3.
Synthesis of a series of new 4‐substituted‐3‐aryl‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazoles ( 2a , 2b , 2c , 2d , 2e , 2f , 2g , 3a , 3b , 3c , 3d , 3e , 3f , 3g , and 4a , 4b , 4c , 4d , 4e , 4f , 4g ) is described. All the synthesized compounds were evaluated in vitro for their antibacterial activity against two gram‐positive and two gram‐negative bacteria, namely, Bacillus subtilis (MTCC 8509), Bacillus stearothermophilus (MTCC 8508), Escherichia coli (MTCC 51), and Pseudomonas putida (MTCC 121), and their activity was compared with two commercial antibiotics, streptomycin and chloramphenicol. Two compounds, namely, 3‐(4‐anisyl)‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2b ) and 3‐(2‐thienyl)‐1‐(2,6‐dimethyl pyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2g ) were found to be equipotent to streptomycin and chloramphenicol against gram‐negative bacteria, E. coli having minimum inhibitory concentration (MIC) value = 4 μg/mL. Compounds 4b and 4d also displayed good activity against E. coli with MIC = 8 μg/mL. J. Heterocyclic Chem., (2011).  相似文献   

4.
In order to explore the anticancer and antimicrobial activity associated with the thiazole framework, we synthesized the new series (Z )‐2‐((5‐(4‐nitrobenzylidene)‐4‐oxo‐4,5‐dihydrothiazol‐2‐yl)amino)‐substituted acid derivatives 6a – l . All the synthesized compounds were evaluated for anticancer and antimicrobial activity in vitro. Among these, the compounds 6a , 6b, 6c , 6e , 6f , 6g , 6h , 6i , 6j , and 6k showed highest antibacterial and antifungal activity. The compound 6a exhibited significant antibacterial activity against Bacillus subtilis , whereas compound 6j displays significant antifungal activity against fungal strains, that is, A. oryzae . The in vitro anticancer studies revealed that 6e , 6g , 6h , 6k , and 6l are the most active compounds against MCF‐7 and BT‐474 human breast cancer cell lines, which can be regarded as the promising drug candidate for development of anticancer drugs.  相似文献   

5.
2‐(2,4‐Dioxothiazolidin‐5‐yl)acetic acid 1 and its chloride derivative 2 were allowed to react with different aromatic amines such as o‐phenylenediamine, o‐aminothiophenol, p‐aminoacetophenone, and anthranilic acid to give the biologically active nuclei such as imidazoles, thiazoles, benzoxazines, and quinazolines incorporated with the thiazolidindione nucleus. The antimicrobial activity of five of the synthesized compounds was examined against one gram positive bacteria (Staphylococcus aureus), one gram negative bacteria (Escherichia coli), and two fungi (Aspergillus flavus and Candida albicans). Four compounds showed moderate antibacterial and antifungal activities.  相似文献   

6.
The present study depicts synthesis of a series of some novel 5‐(5‐(aryl)‐1,3,4‐oxadiazol‐2‐yl)‐3,4‐dihydro‐6‐methyl‐4‐styrylpyrimidin‐2(1H)‐one derivatives. All the newly synthesized compounds were characterized by FTIR, 1H NMR, 13C NMR, mass spectrometry, and elemental analysis. The compounds were evaluated for their in vivo anti‐inflammatory activity by the carrageenan‐induced rat paw edema method. The compounds were also screened for their anthelmintic activity on Indian earthworms and antibacterial activity against some gram positive and gram negative strains of bacteria. This pharmacological activity evaluation revealed that, among all the compounds screened, compounds 4b and 4c were found to have promising anti‐inflammatory activity. Interestingly, compounds 4b , 4c , and 4i exhibited appreciable anthelmintic property, while compounds 4c , 4g , and 4h showed leading antibacterial activity against the selected pathogenic strains of bacteria.  相似文献   

7.
In an attempt to synthesize antibacterial agents effective against gram‐positive and gram‐negative bacteria, the efficient synthesis of novel bis‐azetidinones ( 3a–j ) has been established. Thus, cycloaddition reaction of substituted bis‐imines with chloroacetylchloride under microwave irradiation in the presence of zeolite yielded bis‐azetidinones ( 3a–j ). Structures of the synthesized compounds have been elucidated on the basis of their elemental analysis and spectral data (IR, 1H‐NMR, 13C‐NMR, and mass spectra). The synthesized bis‐azetidinones were screened for their antibacterial activity against five microorganisms: Bacillus subtilis, Proteus vulgaris, Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli. They were found to exhibit good to moderate antibacterial activity.  相似文献   

8.
New series of quinoxaline derivatives ( 4a–4h ) were synthesized by treating 2‐chloro‐3‐hydrazinyl quinoxalin ( 3 ) with various anilines. Compound 3 was obtained from the 2,3‐dichloroquinoxaline 2 which was prepared from 4‐dihydroquinoxaline‐2,3‐dione ( 1 ). All synthesized compounds ( 4a–4h ) were characterized by various spectral techniques, that is, IR, 1H‐NMR, mass spectroscopy, and elemental analysis and completion of reaction were confirmed by TLC. In vitro antimicrobial activity of synthesized compounds was evaluated using disc diffusion assay against gram‐positive and gram‐negative microbial strains, and then, the minimum inhibitory concentration and IC50 values of compounds were also determined. The results of antimicrobial study revealed that compounds 4e , 4g , and 4a were active and exhibited better inhibitory activities as compared with standard drug amoxicillin. Docking studies were performed by using Argus lab, and all the compounds exhibited good docking scores between −9.53 and −7.94 kcal/mol against dihydrofolate reductase protein fragment from Staphylococcus aureus (PDB ID‐4XE6). Among all compounds, 4e has shown the maximum docking score and found in agreement to in vitro studies.  相似文献   

9.
To evaluate the effect of substituents on biological activities of electron‐rich N‐containing heterocycles, the variably 2‐substituted 5,6‐dihydro‐5‐oxo‐4H‐1,3,4‐oxadiazine‐4‐propanenitriles 26 – 33 were synthesized and evaluated for antibacterial, antifungal, and enzyme‐inhibition activities. The target compounds were obtained from alkyl 4‐ or 3‐hydroxy benzoates 1 and 2 , respectively, and from methyl indoleacetate 3 . The phenolic OH group of benzoates 1 and 2 were substituted with p‐toluenesulfonyl (→ 4 and 5 ), benzoyl (→ 6 and 7 ), and benzyl groups (→ 8 and 9 ) and then converted to 5,6‐dihydro‐5‐oxo‐4H‐1,3,4‐oxadiazine‐4‐propanenitriles. To establish structure‐activity relationships (SAR), a pharmacological screening of the intervening intermediates was also conducted, which revealed that the intermediate hydrazide 11 possesses significant antimicrobial and MAO‐A inhibiting properties and intermediates 12, 24, 28 , and 29 appreciable antifungal activities. Compound 7 inhibits α‐chymotrypsin.  相似文献   

10.
A series of new triazole derivatives of quinazolin‐4(3H)‐one and new oxadiazole derivatives of quinazolin‐4(3H)‐one were synthesized. The newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR and mass spectral data. All the newly synthesized compounds were screened for antibacterial activity against Staphylococcus aureus, Bacillus subtilis (gram‐positive bacteria), Escherichia coli, Pseudomonas aeruginosa (gram‐negative bacteria), and antifungal activity was carried out against Candida albicans and Aspergillus niger.  相似文献   

11.
A series of novel 4‐(3,3‐dimethylspiro{bicyclo[2.2.1]heptan‐2,5′‐isoxazoline‐2}‐3′‐yl)‐2‐phenyl‐2,3‐dihydro‐1H‐1,5‐benzodiazepines were synthesized. These molecules were screened in vitro for their antifungal and antibacterial activity, and none of the tested compounds showed promising antimicrobial or antifungal activity. J. Heterocyclic Chem., 2011.  相似文献   

12.
Some new derivatives 7‐chloro‐2‐[2‐(2,6‐dichlorophenyl)amino]benzyl‐3‐[4‐(2‐substituted phenyl‐4‐oxo‐ thiazolidin‐3‐yl)phenyl]sulfonamido‐quinazolin‐4(3H)‐ones 5a – 5l were synthesized from 2‐[2‐(2,6‐dichloro‐phenyl)amino]phenyl acetic acid via acid chloride, benzoxazinone, amino quinazolin‐4(3H)‐one and Schiff base formation. The synthesized compounds were screened for in vitro antibacterial and antifungal activities by broth micro dilution method. Some of the Schiff base as well as 4‐thiazolidinone derivatives showed promising antibacterial activity while pronounced antifungal activity was observed against C. albicans.  相似文献   

13.
A series of novel oxadiazino/thiadiazino‐indole and oxadiazole/thiadiazole derivatives of 2‐oxo‐2H‐benzopyran were synthesized and evaluated for their antimicrobial activities against the bacteria Staphylococcus aureus, Salmonella typhi, and Escherichia coli and two fungal species Candida albicans and Aspergillus niger. The antibacterial activities were expressed as minimum inhibitory concentration (MIC50) in microgram per milliliter. The title compounds 4b and 10b revealed promising antibacterial activity whereas 6d , 7d , 9d , and 10b exhibited significantly impressive antifungal activity.  相似文献   

14.
Five new Ni(II) Schiff base complexes [NiLx(Solv)2] denoted by NiLx, x = 1–5, were synthesized and characterized. The Schiff base ligands were synthesized from the condensation of 5-bromo-2-hydroxy-3-nitrobenzaldehyde with different aliphatic and aromatic diamines. The X-ray crystal structure of NiL3 was determined. The ligands and complexes were tested as antibacterial agents against two gram(+) and two gram(?) human pathogenic bacteria. The complexes showed moderate antibacterial activity against both gram type bacteria. The new Ni(II) complexes showed enhanced antibacterial activity compared to the previously reported Cu(II) complexes of the same ligands.  相似文献   

15.
Biodegradable poly(ester‐phosphoester)s bearing multiple chloroethyl groups were synthesized facilely by the ring‐opening copolymerization of 2‐(2‐chloroethoxy)‐2‐oxo‐1,3,2‐dioxaphospholane (CEP) and ε‐caprolactone (CL) in the presence of lanthanum tris(2,6‐di‐tert‐butyl‐4‐methylphenolate)s (La(DBMP)3) as single‐component catalyst under mild conditions. Then the quaternization reaction was carried out between the halide copolymers and a series of N,N‐dimethyl alkylamines to give poly(ester‐phosphoester)s containing ammonium groups with various charge density and alkyl chain length. The antibacterial properties of these cationic poly(esterphosphoester)s were evaluated by OD600 and zone of inhibition methods against gram‐negative (Escherichia coli) and gram‐positive (Staphylococcus aureus) bacteria. Cationic poly(esterphosphoester)s with long alkyl chain on the ammonium groups show excellent antibacterial activity for both gram‐negative and gram‐positive bacteria even with low charge density. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3667–3673  相似文献   

16.
A simple and highly efficient one‐pot, three‐component synthesis of novel substituted imidazole derivatives has been reported by the reaction of 3‐(2‐bromoacetyl)‐2H‐chromen‐2‐one, ammonium thiocyanate, and phenacyl aniline in the presence of acetic acid as a solvent under reflux condition with good yields. The structures of newly synthesized compounds were characterized by their analytical and spectral data. One of these compounds 4a showed good antibacterial activity against Escherichia coli gram‐negative strains.  相似文献   

17.
In continuing our efforts to find new effective antimicrobial agents for overcoming the problem of microbial resistance, a new series of functionalized 5-hetarylthiazoles have been designed and synthesized starting from readily accessible 1-(2-allylamino-4-methylthiazol-5-yl)ethanone (3). The structures of newly synthesized compounds were confirmed by elemental analyses, spectral data, and chemical transformations. The synthesized compounds were evaluated in vitro for their antimicrobial activity against some human pathogenic bacterial and fungal strains. The compounds 7, 18, and 24 exhibited higher antibacterial activity with minimum inhibitory concentration (MIC) values ranging from (0.03–0.06?µg/mL) than ampicillin (MIC, 0.12?µg/mL) against Streptococcus pneumoniae. Whereas compounds 4, 22, and 24 revealed higher antifungal potency than amphotericin B against Aspergillus fumigatus. The structure and antimicrobial activity relationship was also discussed.  相似文献   

18.
Two new series of N‐thiazolyl hydrazones ( 3a – h ) and indenopyrazolones ( 4a – h ) were synthesized by the reaction of various 2‐acyl‐(1H)‐indene‐1,3(2H)‐diones, thiosemicarbazide, and phenacyl bromide/substituted phenacyl bromides. The in vitro antimicrobial activity of these synthesized compounds was assayed against four bacteria, namely, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and two fungi, namely, Candida albicans and Aspergillus niger, by employing serial dilution method. Ciprofloxacin and fluconazole were used as antibacterial and antifungal reference drugs, respectively. Results of antimicrobial assay showed that the tested compounds have broad range of activity. The compounds 3h and 4a against Calbicans displayed more potency than fluconazole whereas 3b and 3c against Bsubtilis showed activity comparable with ciprofloxacin. The synthesized indenopyrazolones ( 4a – h ) were evaluated for their in vitro antioxidant activity by 2,2‐diphenyl‐1‐picrylhydrazyl radical scavenging assay using ascorbic acid as reference. Compound 4b exhibited the highest 2,2‐diphenyl‐1‐picrylhydrazyl radical scavenging with IC50 value 33.14 μg/mL. The observed results of antimicrobial activity were supported by molecular docking study performed to understand the binding interaction of hydrazones ( 3a – h ) and indenopyrazolones ( 4a – h ) with lanosterol 14α‐demethylase.  相似文献   

19.
Three‐component reaction involving condensation of 1‐methyl quinoline‐2,4(1H ,3H )‐dione 1 , isatins 2(a–e) , and malononitrile/cyanoacetic ester 3(a–b) in the task‐specific ionic liquid [DBU][Ac] (1,8‐diazabicyclo[5.4.0]‐undec‐7‐en‐8‐ium acetate) leading to the spirooxindole derivatives 4(a–j) is described. This approach is affords the products in high yields without use of column chromatography and resulting compounds were evaluated for antibacterial activity against both gram positive and gram negative bacteria (Staphylococcus aureus , Escherichia coli , Bacillus cereus, Bacillus subtilis, Salmonella typhimurium, and Klebsiella pneumonia ). Among the all compounds, four compounds, that is, 4b, 4e, 4f, 4g, 4j exhibited moderate activity against all the strains as compared with the standard used.  相似文献   

20.
A convenient synthesis of a new series of N‐aryl‐5‐(pyridin‐3‐yl)‐1H/3H‐1,2,3‐triazole‐4‐carbonitriles and alkyl N‐aryl‐5‐(pyridin‐3‐yl)‐1H/3H‐1,2,3‐triazole‐4‐carboxylic acid esters is reported. The newly synthesized 5‐(pyridin‐3‐yl)‐1,2,3‐triazole derivatives are evaluated for their antibacterial and antifungal activity. Some of these triazole derivatives have exhibited moderate antimicrobial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号