首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 2D numerical model is proposed to simulate unsteady cavitating flows. The Reynolds‐averaged Navier–Stokes equations are solved for the mixture of liquid and vapour, which is considered as a single fluid with variable density. The vapourization and condensation processes are controlled by a barotropic state law that relates the fluid density to the pressure variations. The numerical resolution is a pressure‐correction method derived from the SIMPLE algorithm, with a finite volume discretization. The standard scheme is slightly modified to take into account the cavitation phenomenon. That numerical model is used to calculate unsteady cavitating flows in two Venturi type sections. The choice of the turbulence model is discussed, and the standard RNG k–εmodel is found to lead to non‐physical stable cavities. A modified k–εmodel is proposed to improve the simulation. The influence of numerical and physical parameters is presented, and the numerical results are compared to previous experimental observations and measurements. The proposed model seems to describe the unsteady cavitation behaviour in 2D geometries well. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
A solver is developed for time-accurate computations of viscous flows based on the conception of Newton‘s method. A set of pseudo-time derivatives are added into governing equations and the discretized system is solved using GMRES algorithm. Due to some special properties of GMRES algorithm, the solution procedure for unsteady flows could be regarded as a kind of Newton iteration. The physical-time derivatives of governing equations are discretized using two different approaches, I.e., 3-point Euler backward, and Crank-Nicolson formulas, both with 2nd-order accuracy in time but with different truncation errors. The turbulent eddy viscosity is calculated by using a version of Spalart~Allmaras one-equation model modified by authors for turbulent flows. Two cases of unsteady viscous flow are investigated to validate and assess the solver, I.e., low Reynolds number flow around a row of cylinders and transonic bi-circular-arc airfoil flow featuring the vortex shedding and shock buffeting problems, respectively. Meanwhile, comparisons between the two schemes of timederivative discretizations are carefully made. It is illustrated that the developed unsteady flow solver shows a considerable efficiency and the Crank-Nicolson scheme gives better results compared with Euler method.  相似文献   

3.
The present simulation investigates the multiphase cavitating flow around an underwater projectile. Based on the Homogeneous Equilibrium Flow assumption, a mixture model is applied to simulate the multiphase cavitating flow including ventilated cavitation caused by air injection as well as natural cavitation that forms in a region where the pressure of liquid falls below its vapor pressure. The transport equation cavitating model is applied. The calculations are executed based on a suite of CFD code. The hydrodynamics characteristics of flow field under the interaction of natural cavitation and ventilated cavitation is analyzed. The results indicate that the ventilated cavitation number is under a combined effect of the natural cavitation number and gas flow rate in the multiphase cavitating flows.  相似文献   

4.
In this paper, we have proposed a time marching intregral equation method which does not have the limitation of the time linearized integral equation method in that the latter method can not satisfactorily simulate the shock-wave motions. Firstly, a model problem—one dimensional initial and boundary value wave problem is treated to clarify the basic idea of the new method. Then the method is implemented for 2-D and 3-D unsteady transonic flow problems. The introduction of the concept of a quasi-velocity-potential simplifies the time marching integral equations and the treatment of trailing vortex sheet condition. The numerical calculations show that the method is reasonable and reliable.  相似文献   

5.
A high‐resolution numerical scheme based on the MUSCL–Hancock approach is developed to solve unsteady compressible two‐phase dilute viscous flow. Numerical considerations for the development of the scheme are provided. Several solvers for the Godunov fluxes are tested and the results lead to the choice of an exact Riemann solver adapted for both gaseous and dispersed phases. The accuracy of the scheme is proven step by step through specific test cases. These simulations are for one‐phase viscous flows over a flat plate in subsonic and supersonic regimes, unsteady flows in a low‐pressure shock tube, two‐phase dilute viscous flows over a flat plate and, finally, two‐phase unsteady viscous flows in a shock tube. The results are compared with well‐established analytical and numerical solutions and very good agreement is achieved. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Different computational fluid dynamics (CFD) strategies have been developed to simulate, analyse and better understand cavitating flows. Based on homogeneous models, two numerical approaches using compressible and incompressible codes are applied to capture large density variations and unsteady behaviours of cavitating flows. Simulations are performed on two-dimensional Venturi geometries and compared with experimental data. Local and global analyses are proposed and the necessity to account for compressibility phenomena is discussed.  相似文献   

7.
In the present paper, random-choice method (RCM) and second-order GRP difference method, which are high resolution methods used for pure gas flows with shocks, are extended and employed to study the problem of one-dimensional unsteady two-phase flows. The two-phase shock wave and the flow field behind it in a dusty gas shock tube are calculated and the time-dependent change of the fiow parameters for the gas antiparticle phase are obtained. The numerical results indicate that both the two methods can give the relaxation structure of the two-phase shocks with a sharp discontinuous front and that the GRP method has the advantages of less time-consuming and higher accuracy over the RCM method.  相似文献   

8.
高超声速非定常流动的数值模拟与气动热计算   总被引:2,自引:0,他引:2  
高超声速飞行器研究中的一个重点问题是飞行器表面的气动加热,它对飞行器的气动、热特性及安全性有重要的影响.受到当前实验技术的限制,地面实验无法准确模拟真实飞行条件,所以采用数值模拟研究气动加热问题成为目前重要的研究手段.本文采用数值方法求解三维N-S方程,得到钝头体再入模型绕流的瞬态流场,驻点温度及表面热流沿轨道变化规律.计算中采用变边界条件模拟沿轨道飞行的非定常性.  相似文献   

9.
A numerical method is developed for investigating the two‐dimensional unsteady viscous flow over an inclined elliptic cylinder placed in a uniform stream of infinite extent. The direction of the free stream is normal to the cylinder axis and the flow field unsteadiness arises from two effects, the first is due to the flow field development following the start of the motion and the second is due to vortex shedding in the wake region. The time‐dependent flow is governed by the full conservation equations of mass and momentum with no boundary layer approximations. The parameters involved are the cylinder axis ratio, Reynolds number and the angle of attack. The investigation covers a Reynolds number range up to 5000. The minor–major axis ratio of the elliptic cylinder ranges between 0.5 and 0.6, and the angle of attack ranges between 0° and 90°. A series truncation method based on Fourier series is used to reduce the governing Navier–Stokes equations to two coupled infinite sets of second‐order differential equations. These equations are approximated by retaining only a finite number of terms and are then solved by approximating the derivatives using central differences. The results reveal an unusual phenomenon of negative lift occurring shortly after the start of motion. Various comparisons are made with previous theoretical and experimental results, including flow visualizations, to validate the solution methodology. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
A new numerical method for solving the axisymmetric unsteady incompressible Navier-Stokes equations using vorticity-velocity variables and a staggered grid is presented. The solution is advanced in time with an explicit two-stage Runge-Kutta method. At each stage a vector Poisson equation for velocity is solved. Some important aspects of staggering of the variable location, divergence-free correction to the velocity field by means of a suitably chosen scalar potential and numerical treatment of the vorticity boundary condition are examined. The axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed as an initial value problem. Comparison of the computational results using a staggered grid with those using a non-staggered grid shows that the staggered grid is superior to the non-staggered grid. The computed scenario of the transition from zero-vortex to two-vortex flow at moderate Reynolds number agrees with that simulated using a pseudospectral method, thus validating the temporal accuracy of our method.  相似文献   

11.
Many problems of interest are characterized by 2 distinctive and disparate scales and a huge multiplicity of similar small‐scale elements. The corresponding scale‐dependent solvability manifests itself in the high gradient flow around each element needing a fine mesh locally and the similar flow patterns among all elements globally. In a block spectral approach making use of the scale‐dependent solvability, the global domain is decomposed into a large number of similar small blocks. The mesh‐pointwise block spectra will establish the block‐block variation, for which only a small set of blocks need to be solved with a fine mesh resolution. The solution can then be very efficiently obtained by coupling the local fine mesh solution and the global coarse mesh solution through a block spectral mapping. Previously, the block spectral method has only been developed for steady flows. The present work extends the methodology to unsteady flows of short temporal and spatial scales (eg, those due to self‐excited unsteady vortices and turbulence disturbances). A source term–based approach is adopted to facilitate a two‐way coupling in terms of time‐averaged flow solutions. The global coarse base mesh solution provides an appropriate environment and boundary condition to the local fine mesh blocks, while the local fine mesh solution provides the source terms (propagated through the block spectral mapping) to the global coarse mesh domain. The computational method will be presented with several numerical examples and sensitivity studies. The results consistently demonstrate the validity and potential of the proposed approach.  相似文献   

12.
A. Berg  U. Iben  A. Meister  J. Schmidt 《Shock Waves》2005,14(1-2):111-121
The present paper focuses on a homogeneous cavitation model based on the thermodynamic equilibrium model of liquid and steam, which has significant importance for the development of modern hydraulic tools and injection systems. Subsequent to the derivation of the mathematical model a numerical method is described. Computations are carried out for a variety of test cases. The results are compared with analytic solutions, experimental data, and simulations obtained with a different numerical scheme. The investigation proves the ability of the method to predict cavitation in hydraulic pipelines in a reliable and successful manner. The lucidity of the procedure enables a simple extension of the model and the numerical method to higher space dimensions as well as applications in the context of complex hydraulic systems.Received: 2 May 2002, Revised: 7 July 2003, Accepted: 5 August 2003, Published online: 18 February 2005[/PUBLISHED]Correspondence to: A. Meister  相似文献   

13.
A new numerical algorithm for attached cavitation flows is developed. A cavitation model is implemented in a viscous Navier–Stokes solver. The liquid–vapour interface is assumed as a free surface boundary of the computation domain. Its shape is determined with an iterative procedure to match the cavity surface to a constant pressure boundary. The pressure distribution, as well as its gradient along the wall, is taken into account in updating the cavity shape iteratively. A series of computations are performed for the cavitating flows across three kinds of headform/cylinder bodies: conic, ogival and hemispheric heads. A range of cavitation numbers is investigated for each headform/cylinder body. The obtained results are reasonable and the iterative procedure of cavity shape updating is quite stable. The superiority of the developed cavitation model and algorithm is demonstrated. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is presented with both analytical and numerical approaches. With the analytical method, the unsteady compressible boundary layer equation is solved. In the neighborhood of the initial and final steady states, the transient responses can be expressed with a steady-state solution plus a perturbation series. By combining these two solutions, a complete solution in the entire time domain is achieved. In the region in which the analytical approach is applicable, numerical results are in good agreement with the analytical results, showing reliability of the methods. The result shows two distinct features of the unsteady response. In a short period just after a sudden increase in the wall temperature, the direction of the wall heat flux is reverted, and a new inflexion near the wall occurs in the profile of the thermal boundary layer. This is a typical unsteady characteristic. However, these unsteady responses only exist in a very short period in hypersonic flows, meaning that, in a long-term aerodynamic heating process considering only unsteady surface temperature, the unsteady characteristics of the flow can be ignored, and the traditional quasi-steady aerodynamic heating prediction methods are still valid.  相似文献   

15.
The single‐phase level set method for unsteady viscous free surface flows is presented. In contrast to the standard level set method for incompressible flows, the single‐phase level set method is concerned with the solution of the flow field in the water (or the denser) phase only. Some of the advantages of such an approach are that the interface remains sharp, the computation is performed within a fluid with uniform properties and that only minor computations are needed in the air. The location of the interface is determined using a signed distance function, and appropriate interpolations at the fluid/fluid interface are used to enforce the jump conditions. A reinitialization procedure has been developed for non‐orthogonal grids with large aspect ratios. A convective extension is used to obtain the velocities at previous time steps for the grid points in air, which allows a good estimation of the total derivatives. The method was applied to three unsteady tests: a plane progressive wave, sloshing in a two‐dimensional tank, and the wave diffraction problem for a surface ship, and the results compared against analytical solutions or experimental data. The method can in principle be applied to any problem in which the standard level set method works, as long as the stress on the second phase can be specified (or neglected) and no bubbles appear in the flow during the computation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The interfacial dynamics‐based cavitation model, developed in Part‐1, is further employed for unsteady flow computations. The pressure‐based operator‐splitting algorithm (PISO) is extended to handle the time‐dependent cavitating flows with particular focus on the coupling of the cavitation and turbulence models, and the large density ratio associated with cavitation. Furthermore, the compressibility effect is important for unsteady cavitating flows because in a water–vapour mixture, depending on the composition, the speed of sound inside the cavity can vary by an order of magnitude. The implications of the issue of the speed of the sound are assessed with alternative modelling approaches. Depending on the geometric confinement of the nozzle, compressibility model and cavitation numbers, either auto‐oscillation or quasi‐steady behaviour is observed. The adverse pressure gradient in the closure region is stronger at the maximum cavity size. One can also observe that the mass transfer process contributes to the cavitation dynamics. Compared to the steady flow computations, the velocity and vapour volume fraction distributions within the cavity are noticeably improved with time‐dependent computations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Numerical simulation of multi‐bladed lifting rotors in forward flight is considered. The flow‐solver presented is multiblock and unsteady, which is essential for forward flight, and also includes multigrid acceleration to reduce run‐times. A structured multiblock grid generator specifically for rotor blades has also been developed and is presented here. Previous work has shown that hovering lifting rotor flows are particularly expensive to simulate, since the capture of the vortical wake below the disc requires a long numerical integration time; more than 20 revolutions for an unsteady simulation, or more than 40000 time‐steps for a single grid steady simulation. It is demonstrated here that only two or three revolutions are required to obtain a converged solution for forward flight, since the wake is swept downstream. This requires less than 1.5 × the run‐time of a steady hovering simulation, for the same grid density around each blade, even though an unsteady simulation is required and the complete disk must be solved rather than one blade as in hover. It is demonstrated that very fine meshes are required to capture the unsteady tip vortex motion, and the effects on blade loading of blade‐vortex interaction and rotor shaft inclination are also considered. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
A computational method is proposed to simulate 3D unsteady cavitating flows in spatial turbopump inducers. It is based on the code FineTurbo, adapted to take into account two‐phase flow phenomena. The initial model is a time‐marching algorithm devoted to compressible flow, associated with a low‐speed preconditioner to treat low Mach number flows. The presented work covers the 3D implementation of a physical model developed in LEGI for several years to simulate 2D unsteady cavitating flows. It is based on a barotropic state law that relates the fluid density to the pressure variations. A modification of the preconditioner is proposed to treat efficiently as well highly compressible two‐phase flow areas as weakly compressible single‐phase flow conditions. The numerical model is applied to time‐accurate simulations of cavitating flow in spatial turbopump inducers. The first geometry is a 2D Venturi type section designed to simulate an inducer blade suction side. Results obtained with this simple test case, including the study of its general cavitating behaviour, numerical tests, and precise comparisons with previous experimental measurements inside the cavity, lead to a satisfactory validation of the model. A complete three‐dimensional rotating inducer geometry is then considered, and its quasi‐static behaviour in cavitating conditions is investigated. Numerical results are compared to experimental measurements and visualizations, and a promising agreement is obtained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号