首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a 19F‐NMR analytical method, we have corrected and improved the linear correlation initially found between the diastereoselectivity observed during the EtMgBr conjugated addition to Michael acceptors of type 1 , as a function of their σpara Hammett electronic parameters. Based on 1H‐NMR analyses, we have also discovered that the original configuration of the acetylated intermediate, obtained by either hydride, Grignard, or cuprate conjugate additions to α‐substituted N‐enoyl bornane‐10,2‐sultams was initially erroneously attributed by Oppolzer et al. A new, much simpler rationalization for these 1,4‐additions has now been proposed.  相似文献   

2.
The synthesis and the X‐ray structure of the three new N‐(arylcarbonyl)‐substituted derivatives 2a – 2c of (2R)‐bornane‐10,2‐sultam are presented and discussed. Direct comparison of the solid‐state analyses shows that the dipole‐directed SO2/C?O anti‐/syn‐conformations may be very sensitive to weak electronic/electrostatic repulsions of the heteroatom lone pairs. The optimum interactions are reached when the lone pair of the β‐positioned heteroatom is oriented in the O(3)?C(11)? N(1) plane. Such rare syn‐conformations may be observed with at least up to 1.8 kcal/mol higher energy as compared to their ground states. Additionally, these anti/syn‐conformations are also very sensitive to external influences such as, for example, the crystal‐packing forces.  相似文献   

3.
Asymmetric 1,3‐dipolar cycloadditions of chiral derivatives of the nitrile oxides 3a – 3c derived from (2R)‐bornane‐10,2‐sultam, (2R)‐10‐(dicyclohexylsulfamoyl)isoborneol, and (1R)‐8‐phenylmenthol, to either (E)‐stilbene 4 or dimethyl fumarate 5 , leading to the corresponding 4,5‐dihydroisoxazoles 6a – 6c and 7a – 7c in both moderate yields and diastereoselectivities, are presented. All cycloadducts were converted into the corresponding methyl esters 8 and 9 , which were used for determination of their enantiomeric purities via chiral HPLC analyses. In the case of both stilbene cycloadducts 6a and 6b , their absolute configurations were determined by X‐ray crystal‐structure analyses. These [3+2] cycloadditions suggest the participation of the thermodynamically less stable SO2/CO syn‐conformer in the πy approach along the C?O bond of the linear nitrile oxide 3a .  相似文献   

4.
By combining enamines, derived from aldehydes and diphenylprolinol trimethylsilyl ether (the Hayashi catalyst), with nitroethenes ((D6)benzene, 4‐Å molecular sieves, room temperature) intermediates of the corresponding catalytic Michael‐addition cycles were formed and characterized (IR, NMR, X‐ray analysis; Schemes 36 and Fig. 13). Besides cyclobutanes 2 , 1,2‐oxazine N‐oxide derivatives 3 – 6 and 8 have been identified for the first time, some of which are very stable compounds. It may not be a lack of reactivity (between the intermediate enamines and nitro olefins) that leads to failure of the catalytic reactions (Schemes 35) but the high stability of catalyst resting states. The central role zwitterions play in these processes is discussed (Schemes 1 and 2).  相似文献   

5.
Unexpected dimers of some 2‐substituted indan‐1‐one derivatives were isolated during aldol condensation of indan‐1‐one with various aldehydes in the presence of KOH (see Scheme). Monomeric products, usually expected from aldol condensation, further underwent a base‐catalyzed nucleophilic addition reaction to their dimeric form in some cases. The structures of these dimers were characterized by using various spectral techniques and in one case, structural details were determined from a high‐resolution crystallographic analysis.  相似文献   

6.
A new germanium complex, cis‐[Ge(pyca)2(OH)2]?2 H2O ( 1 ; pyca=pyridine‐2‐carboxylato), was synthesized by the reaction of [Ge(acac)2Cl2] (acac=acetylacetonato=pentane‐2,4‐dionato) with potassium pyridine‐2‐carboxylate (Kpyca) in H2O/THF. According to the single‐crystal X‐ray diffraction analysis, each Ge‐atom of 1 is coordinated by two pyca ligands and two OH? groups (Fig. 1). These molecules are bonded to each other via a system of H‐bonds resulting in a sheet‐like structure (Fig. 2). The complex is decomposed during heating with stepwise mass loss and formation of GeO2 as final product (Fig. 3).  相似文献   

7.
The syntheses of the two tetraazamacrocyclic ligands L1 and L2 bearing a [(methoxy‐2‐nitrophenyl)amino]carbonyl chromophore, i.e., an N‐(methoxy‐2‐nitrophenyl)acetamide moiety, together with their corresponding lanthanide‐ion complexes are described. A combined spectroscopic (UV/VIS, 1H‐NMR), structural (X‐ray), and theoretical (DFT) investigation revealed that the absorption properties of the chromophores were dictated by the extent of electronic delocalisation, which in turn was determined by the position of the MeO substituent at the aromatic ring. X‐Ray crystallographic studies showed that when attached to the macrocycle, both isomeric forms of the N‐(methoxy‐2‐nitrophenyl)acetamide unit can participate in coordination, via the C?O, to an encapsulated potassium cation. Luminescence measurements confirmed that such a binding mode also exists in solution for the corresponding lanthanide complexes (q ca. ≤1), with the para‐MeO derivative allowing longer wavelength sensitization (λex 330 nm).  相似文献   

8.
A study on the synthesis of the novel N‐(cyclic phosphonate)‐substituted phosphoramidothioates, i.e., O,O‐diethyl N‐[(trans‐4‐aryl‐5,5‐dimethyl‐2‐oxido‐2λ5‐1,3,2‐dioxaphosphorinan‐2‐yl)methyl]phosphoramidothioates 4a – l , from O,O‐diethyl phosphoramidothioate ( 1 ), a benzaldehyde or ketone 2 , and a 1,3,2‐dioxaphosphorinane 2‐oxide 3 was carried out (Scheme 1 and Table 1). Some of their stereoisomers were isolated, and their structure was established. The presence of acetyl chloride was essential for this reaction and accelerated the process of intramolecular dehydration of intermediate 5 forming the corresponding Schiff base 7 (Scheme 2).  相似文献   

9.
The 7‐(2‐bromoethyl) derivatives, 2a and 2b , of 4‐chloro‐7H‐pyrrolo[2,3‐d]pyrimidine ( 1a ) and 4‐chloro‐7H‐pyrrolo[2,3‐d]pyrimidin‐2‐amine ( 1b ) were synthesized by nucleobase anion alkylation (NaH, DMF) and crystallized. X‐Ray analyses of both compounds were performed, and they revealed significantly different positioning of the side chain relative to the heterocyclic ring, depending on the substituent (H or NH2) at C(2).  相似文献   

10.
The asymmetric Aza‐Michael addition of homochiral lithium benzylamides to α,β‐unsaturated esters represents an extended protocol to obtain enantioenriched β‐amino esters. An exhaustive mechanistic revision of the originally proposed mechanism is reported, developing a quantum mechanics/molecular mechanics protocol for the asymmetric Aza‐Michael reaction of homochiral lithium benzylamides. Explicit and implicit solvent schemes were considered, together with a proper account of long‐range dispersion forces, evaluated through a density functional theory benchmark of different functionals. Theoretical results showed that the diastereoselectivity is mainly controlled by the N‐α‐methylbenzyl moiety placing, deriving a Si/Re 99:1 diastereoselective ratio, in good agreement with reported experimental results. The main transition state geometries are two transition state conformers in a “V‐stacked” orientation of the amide's phenyl rings, differing in the tetrahydrofuran molecule arrangement coordinated to the metal center. Extensive conformational sampling and quantum‐level refinement give reasonable good speed/accuracy results, allowing this protocol to be extended to other similar Aza‐Michael reaction systems. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
12.
Dimethyl heptalene‐4,5‐dicarboxylates
  • 1 The locants of heptalene itself are maintained throughout the whole work. See footnote 4 in [1] for reasoning.
  • undergo preferentially a Michael addition reaction at C(3) with α‐lithiated alkyl phenyl sulfones at temperatures below ?50°, leading to corresponding cis‐configured 3,4‐dihydroheptalene‐4,5‐dicarboxylates (cf. Table 1, Schemes 3 and 4). The corresponding heptalenofuran‐1‐one‐type pseudoesters of dimethyl heptalene‐4,5‐dicarboxylates (Scheme 5) react with [(phenylsulfonyl)methyl]lithium almost exclusively at C(1) of the furanone group (Scheme 6). In contrast to this expected behavior, the uptake of 1‐[phenylsulfonyl)ethyl]lithium occurs at C(5) of the heptalenofuran‐1‐ones as long as they carry a Me group at C(11) (Schemes 6 and 7). The 1,4‐ as well as the 1,6‐addition products eliminate, on treatment with MeONa/MeOH in THF, benzenesulfinate, thus leading to 3‐ and 4‐alkylated dimethyl heptalene‐4,5‐dicarboxylates, respectively (Schemes 813). The configuration of the addition reaction of the nucleophiles to the inherently chiral heptalenes is discussed in detail (cf. Schemes 1419) on the basis of a number of X‐ray crystal‐structure determinations as well as by studies of the temperature‐dependence of the 1H‐NMR spectra of the addition products.  相似文献   

    13.
    Addition reactions of acid chlorides with various 2‐substituted 4,5‐dihydro‐4,4‐dimethyl‐5‐(methylsulfanyl)‐1,3‐thiazoles under basic conditions were studied. Two kinds of products were obtained from these additions, β‐lactams and non‐β‐lactam adducts. When the reaction was carried out with 4,5‐dihydro‐1,3‐thiazoles with a Ph substituent at C(2), the reaction proceeded via formal [2+2] cycloaddition and led to the correspoding β‐lactam. On the other hand, acid chlorides and 4,5‐dihydro‐1,3‐thiazoles bearing an α‐H‐atom at the C(2)‐substituent underwent C(α)‐ and/or N‐addition reactions and furnished non‐β‐lactam adducts, i.e., C(α)‐ and/or N‐acylated 1,3‐thiazolidines. The attempted transformations of sulfonyl esters of exo‐6‐hydroxy penams to endo‐6‐azido penams failed, although they were successful with mono‐β‐lactams under the same conditions.  相似文献   

    14.
    The title compound (short version: BTE) occurs in (E)‐ and (Z)‐isomers (both with b.p. of ca. 100°) which equilibrate with nucleophilic catalysts. Both undergo (2+2) cycloadditions with methyl vinyl ether at 25°. Three stereogenic centers in the cyclobutanes led to four rac‐diastereoisomers, which were obtained in pure and crystalline state. The structures were elucidated by 19F‐NMR spectroscopy and confirmed by two X‐ray analyses. The cycloadditions were not stereospecific: e.g., (E)‐BTE furnished 73% trans‐adducts (with respect to the CF3 groups) and 27% cis‐adducts. The loss of stereochemical integrity occurs in the intermediate gauche‐zwitterions which can cyclize or rotate, but not dissociate. Under extreme conditions (2M LiClO4 in Et2O, 70°, 3 months), the thermodynamic equilibrium of the four cyclobutanes was achieved. Considerations of Coulombic attraction and conformational strain in the zwitterionic intermediates allow us to rationalize the observed proportions of diastereoisomeric cyclobutanes. Ethyl vinyl ether and butyl vinyl ether furnished cyclobutanes in similar diastereoisomer ratios.  相似文献   

    15.
    Heptalenecarbaldehydes 1 / 1′ as well as aromatic aldehydes react with 3‐(dicyanomethylidene)‐indan‐1‐one in boiling EtOH and in the presence of secondary amines to yield 3‐(dialkylamino)‐1,2‐dihydro‐9‐oxo‐9H‐indeno[2,1‐c]pyridine‐4‐carbonitriles (Schemes 2 and 4, and Fig. 1). The 1,2‐dihydro forms can be dehydrogenated easily with KMnO4 in acetone at 0° (Scheme 3) or chloranil (=2,3,5,6‐tetrachlorocyclohexa‐2,5‐diene‐1,4‐dione) in a ‘one‐pot’ reaction in dioxane at ambient temperature (Table 1). The structures of the indeno[2,1‐c]pyridine‐4‐carbonitriles 5′ and 6a have been verified by X‐ray crystal‐structure analyses (Fig. 2 and 4). The inherent merocyanine system of the dihydro forms results in a broad absorption band in the range of 515–530 nm in their UV/VIS spectra (Table 2 and Fig. 3). The dehydrogenated compounds 5, 5′ , and 7a – 7f exhibit their longest‐wavelength absorption maximum at ca. 380 nm (Table 2). In contrast to 5 and 5′, 7a – 7f in solution exhibit a blue‐green fluorescence with emission bands at around 460 and 480 nm (Table 4 and Fig. 5).  相似文献   

    16.
    The sequential addition of aromatic Grignard reagents to O‐alkyl thioformates proceeded to completion within 30 s to give aryl benzylic sulfanes in good yields. This reaction may begin with the nucleophilic attack of the Grignard reagent onto the carbon atom of the O‐alkyl thioformates, followed by the elimination of ROMgBr to generate aromatic thioaldehydes, which then react with a second molecule of the Grignard reagent at the sulfur atom to form arylsulfanyl benzylic Grignard reagents. To confirm the generation of aromatic thioaldehydes, the reaction between O‐alkyl thioformates and phenyl Grignard reagent was carried out in the presence of cyclopentadiene. As a result, hetero‐Diels–Alder adducts of the thioaldehyde and the diene were formed. The treatment of a mixture of the thioformate and phenyl Grignard reagent with iodine gave 1,2‐bis(phenylsulfanyl)‐1,2‐diphenyl ethane as a product, which indicated the formation of arylsulfanyl benzylic Grignard reagents in the reaction mixture. When electrophiles were added to the Grignard reagents that were generated in situ, four‐component coupling products, that is, O‐alkyl thioformates, two molecules of Grignard reagents, and electrophiles, were obtained in moderate‐to‐good yields. The use of silyl chloride or allylic bromides gave the adducts within 5 min, whereas the reaction with benzylic halides required more than 30 min. The addition to carbonyl compounds was complete within 1 min and the use of lithium bromide as an additive enhanced the yields of the four‐component coupling products. Finally, oxiranes and imines also participated in the coupling reaction.  相似文献   

    17.
    Two novel, stable PdII complexes, compounds 3 and 4 , of two 3‐hydroxypyridine‐2‐carbaldehyde thiosemicarbazones, 1 and 2 , resp., were prepared from Li2PdCl4. The single‐crystal X‐ray structure of complex 3 (= [Pd( 2 )Cl]) shows that the ligand monoanion coordinates in a planar conformation to the metal via the pyridyl N‐, the imine N‐, and the thiolato S‐atoms. Intermolecular H‐bonds, π–π, and CH ? ? ? π interactions lead to a two‐dimensional supramolecular assembly. The electronic, IR, UV/VIS, and NMR spectroscopic data of the two complexes are reported, together with their electrochemical properties. A sophisticated experimental procedure was used to determine the multiple dissociation constants of the ligands 1 and 2 by UV/VIS titration.  相似文献   

    18.
    The synthesis, optical resolution, determination of absolute configuration and conformational preference, and spectroscopic characteristics of terminally protected (blocked) derivatives and short peptides of 2‐amino‐1,2,3,6‐tetrahydro‐6‐oxocyclopenta[c]fluorene‐2‐carboxylic acid (FlAib), a novel, rigid, chiral, cyclized Cα,α‐disubstituted glycine are described.  相似文献   

    19.
    The reaction of 1,5‐dihydro‐2H‐cyclopenta[1,2‐b:5,4‐b′]dipyridin‐2‐one ( 3 ) with an alkylamine (butylamine, hexylamine or ethylenediamine) yields, quite unexpectedly and in the absence of catalyst, the novel compound 1,5‐dihydro‐2H‐cyclopenta[1,2‐b:5,4‐b′]dipyridin‐2‐imine ( 4 ) as the sole, analytically pure, solid product, which was fully characterized. The structure of 4 was unequivocally solved by single‐crystal X‐ray‐diffraction analysis. The compound crystallizes in a monoclinic cell (space group P 21/c), with two molecules in the asymmetric unit, held together by intermolecular H‐bonds. Compound 4 could be interesting as a bi‐ or even tridentate ligand, and exhibits a strong fluorescence upon excitation at 310 nm. A mechanism, based on the observed C? N bond cleavage, is proposed.  相似文献   

    20.
    The reaction of (+)‐car‐2‐ene ( 4 ) with chlorosulfonyl isocyanate (=sulfuryl chloride isocyanate; ClSO2NCO) led to the tricyclic lactams 6 and 8 corresponding to the initial formation both of the tertiary carbenium and α‐cyclopropylcarbenium ions (Scheme 2). A number of optically active derivatives of β‐amino acids which are promising compounds for further use in asymmetric synthesis were synthesized from the lactams (see 16, 17 , and 19 – 21 in Scheme 3).  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号