首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An unsteady finite volume‐based fractional step algorithm solved on a staggered grid has been developed for computing design sensitivity parameters in two‐dimensional flows. Verification of the numerical code is performed for the case of low Reynolds number, pressure‐driven flow through a straight channel, which has an exact steady‐state solution to the Navier–Stokes equations. Sensitivity of the flow to the channel height, fluid viscosity, and imposed pressure gradient is considered. Three different numerical techniques for computing the design sensitivity parameters: finite difference, complex‐step differentiation, and sensitivity equation method (SEM), are compared in terms of numerical error (relative to the exact solution), computational expense, and ease of implementation. Results indicate that, of all the three methods, complex step is the most accurate and requires the least computational time. In addition, treatment of the boundary conditions in SEM is addressed, within the framework of the present finite volume approach, with special attention given to parameter dependence in the boundary conditions. Error estimation based on the Grid Convergence Index provides a good indication of the exact error in the SEM solutions. An example of application of the use of sensitivity parameters to estimate the propagation of input uncertainty through the numerical simulation is also provided. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The hyperbolic conservation laws admit discontinuous solutions where the solution variables can have finite jumps in space and time. The jump conditions for conservation laws are expressed in terms of the speed of the discontinuity and the state variables on both sides. An example from the Gas Dynamics is the Rankine–Hugoniot conditions for the shock speed. Here, we provide an expression for the acceleration of the discontinuity in terms of the state variables and their spatial derivatives on both sides. We derive a jump condition for the shock acceleration. Using this general expression, we show how to obtain explicit shock acceleration formulas for nonlinear hyperbolic conservation laws. We start with the Burgers’ equation and check the derived formula with an analytical solution. We next derive formulas for the Shallow Water Equations and the Euler Equations of Gas Dynamics. We will verify our formulas for the Euler Equations using an exact solution for the spherically symmetric blast wave problem. In addition, we discuss the potential use of these formulas for the implementation of shock fitting methods.  相似文献   

3.
In this paper, extrapolation technique is introduced in the Semi‐Implicit Method for Pressure‐Linked Equations ‐ Time Step (SIMPLE‐TS) finite volume iterative algorithm for calculation of compressible Navier–Stokes–Fourier equations subject of slip and jump boundary conditions. The initial state, required by the iterative solver in simulation of unsteady flow problems, is approximated in time by Lagrange polynomial extrapolation in each node. The approach is applicable to a parallel code in a straightforward way due to algorithmic independence of the neighboring nodes in the computational grid. A criterion is proposed to determine the order of extrapolation polynomial and stop the extrapolation execution, when the local steady state is reached. The approach is tested on different microflow problems: Couette flow, flow past a square in a microchannel at subsonic and supersonic speeds, and convective Rayleigh–Bénard flow of a rarefied gas. The acceleration varies from 1.14‐fold to 2.8‐fold. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Neglecting the convective terms in the Saint-Venant Equations (SVE) in flood hydrodynamic modelling can be done without a loss in accuracy of the simulation results. In this case the Local Inertial Equations (LInE) are obtained. Herein we present two analytical solutions for the Local Inertial Equations. The first is the classical instantaneous Dam-Break Problem and the second a steady state solution over a bump. These solutions are compared with two numerical schemes, namely the first order Roe scheme and the second order MacCormack scheme. Comparison between analytical and numerical results shows that the numerical schemes and the analytical solution converge to a unique solution. Furthermore, by neglecting the convective terms the original numerical schemes remain stable without the need for adding entropy correction, artificial viscosity or special initial conditions, as in the case of the full SVE.  相似文献   

6.
The disturbances generated by external turbulence in the boundary layer on a flat plate set suddenly in motion are determined. A turbulent flow calculated by direct numerical simulation is taken as the initial conditions. The solution obtained simulates the initial stage of laminar-turbulent transition in the flat-plate boundary layer at a high turbulence level in the oncoming flow. The solution makes it possible to estimate the effects of different factors, such as nonstationarity, nonlinearity, and the parameters of the freestream velocity fluctuation spectrum, on disturbance enhancement in the boundary layer.  相似文献   

7.
A revision of some well‐known discretization techniques for the numerical boundary conditions in 1D shallow‐water flow models is presented. More recent options are also considered in the search for a fully conservative technique that is able to preserve the good properties of a conservative scheme used for the interior points. Two conservative numerical schemes are used as representatives of the families of explicit and implicit numerical methods. The implementation of the different boundary options to these schemes is compared by means of the simulation of several test cases with exact solution. The schemes with the global conservation boundary discretization are applied to the simulation of a real river flood wave leading to very satisfactory results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The Arbitrary Lagrangian Eulerian (ALE) framework coupled with some boundary tracking techniques is proven to be an effective method for simulation of free‐surface flows. In this paper, a special ALE framework is derived with clarification of three velocities, the notion of mesh‐frozen and field‐frozen, and the notion of tentatively inertial coordinates. A weighted integral ALE governing equations are formulated on generic coordinates and discretized with a finite element method and linear implicit time scheme. The system is solved with a discrete operator splitting technique and superposition‐based logistic parallelization. The formulation and implementation are verified through several fixed‐geometry problems and a reasonably good parallel performance is observed. Capillary jet flow is the main problem of the paper and the numerical techniques for boundary tracking are elaborated, which include an indirect boundary tracking of flux method and an iterative direct boundary tracking method. Also, a high‐order compact scheme for dynamic boundary condition and a squeeze technique for kinematic boundary condition are adopted. The axisymmetric jet breakup is studied in detail and numerical results match with the published data very well. Numerical accuracy and sensitivity are studied, including effects of element type, time scheme, compact scheme, and boundary tracking techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
In the present study, we have proposed an immersed‐boundary finite‐volume method for the direct numerical simulation of flows with inertialess paramagnetic particles suspended in a nonmagnetic fluid under an external magnetic field without the need for any model such as the dipole–dipole interaction. In the proposed method, the magnetic field (or force) is described by the numerical solution of the Maxwell equation without current, where the smoothed representation technique is employed to tackle the discontinuity of magnetic permeability across the particle–fluid interface. The flow field, on the other hand, is described by the solution of the continuity and momentum equations, where the discrete‐forcing‐based immersed‐boundary method is employed to satisfy the no‐slip condition at the interface. To validate the method, we performed numerical simulations on the two‐dimensional motion of two and three paramagnetic particles in a nonmagnetic fluid subjected to an external uniform magnetic field and then compared the results with the existing finite‐element and semi‐analytical solutions. Comparison shows that the proposed method is robust in the direct simulation of such magnetic particulate flows. This method can be extended to more general flows without difficulty: three‐dimensional particulate flows, flows with a great number of particles, or flows under an arbitrary external magnetic field. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The hybrid experimental-numerical stress-analysis technique, which saw limited applications during the 1950's, has been resurrected with the vastly improved numerical techniques of the 1970's. By inputing the experimental results as initial and boundary conditions, modern computer codes are executed in its generation and application modes to yield results which are unobtainable when only one of the two techniques is used. The hybrid technique thus exemplifies the complementary role of the experimental and numerical techniques.  相似文献   

11.
The present work addresses the numerical prediction of discontinuous shallow water flows by the application of a second‐order Runge–Kutta discontinuous Galerkin scheme (RKDG2). The unsteady flow of water in a one‐dimensional approach is described by the Saint Venant's model which incorporates source terms in practical applications. Therefore, the RKDG2 scheme is reformulated with a simple way to integrate source terms. Further, an adequate boundary conditions handling, by the theory of characteristics, was overviewed to be adapted to the external points of the mesh, as well as to some points of local invalidity of the Saint Venant's model. To validate the proposed technique, steady and transient test problems (all having a reference solution) were considered and computed by means of the overall method. The results were illustrated jointly with the reference solution and the results carried out by a traditional second‐order finite volume (FV2) scheme implemented with the same techniques as the RKDG2. The proposed method has proven its practical consideration when solving discontinuous shallow water flow involving: non‐prismatic channels, various cross‐sections, smoothly varying bed topography and internal boundary conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
A numerical analysis is presented for the unsteady compressible laminar boundary layer driven by a compression or expansion wave. Approximate or series expansion methods have been used for the problems because of the characteristics of the governing equations, such as non-linearity, coupling with the thermal boundary layer equation and initial conditions. Here a transformation of the governing equations and the numerical linearization technique are introduced to deal with the difficulties. First, the governing equations are transformed for the initial conditions by Howarth and semisimilarity variables. These transformations reduce the number of independent variables from three to two and the governing equations from partial to ordinary differential equations at the initial point. Next, the numerical linearization technique is introduced for the non-linearity and the coupling with the thermal boundary layer equation. Because the non-linear terms are linearized without sacrifice of numerical accuracy, the solutions can be obtained without numerical iterations. Therefore the exact numerical solution, not approximate or series expansion, can be obtained. Compared with the approximate or series expansion method, this method is much improved. Results are compared with the series expansion solutions.  相似文献   

13.
In this paper, an adaptive refinement strategy based on a node‐moving technique is proposed and used for the efficient solution of the steady‐state incompressible Navier–Stokes equations. The value of a least squares functional of the residual of the governing differential equation and its boundary conditions at nodal points is regarded as a measure of error and used to predict the areas of poor solutions. A node‐moving technique is then used to move the nodal points to the zones of higher numerical errors. The problem is then resolved on the refined distribution of nodes for higher accuracy. A spring analogy is used for the node‐moving methodology in which nodal points are connected to their neighbors by virtual springs. The stiffness of each spring is assumed to be proportional to the errors of its two end points and its initial length. The new positions of the nodal points are found such that the spring system attains its equilibrium state. Some numerical examples are used to illustrate the ability of the proposed scheme for the adaptive solution of the steady‐state incompressible Navier–Stokes equations. The results demonstrate a considerable improvement of the results with a reasonable computational effort by using the proposed adaptive strategy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper a novel computational technique for the solution of nonlinear third‐order boundary value problems is presented. We demonstrate the application of the method by solving the famous Falkner–Skan equation on a semi‐infinite domain. Comparison with the results from other methods such as the homotopy analysis method and numerical methods demonstrates the accuracy, computational efficiency and robustness of this technique. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The performance of improved initial estimates and ‘heuristic’ and ‘adaptive’ techniques for time step control in the iterative solution of Richards equation is evaluated. The so‐called heuristic technique uses the convergence behaviour of the iterative scheme to estimate the next time step whereas the adaptive technique regulates the time step on the basis of an approximation of the local time truncation error. The sample problems used to assess these various schemes are characterized by nonuniform (in time) boundary conditions, sharp gradients in the infiltration fronts, and discontinuous derivatives in the soil hydraulic properties. It is found that higher order initial solution estimates improve the convergence of the iterative scheme for both the heuristic and adaptive techniques, with greater overall performance gains for the heuristic scheme, as could be expected. It is also found that the heuristic technique outperforms the adaptive method under strongly nonlinear conditions. Previously reported observations suggesting that adaptive techniques perform best when accuracy requirements on the numerical solution are very stringent are confirmed. Overall both heuristic and adaptive techniques have their limitations, and a more general or mixed time stepping strategy combining truncation error and convergence criteria is recommended for complex problems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
In order to use the optimal control techniques in models of geophysical flow circulation, an application to a 1D advection–diffusion equation, the so-called Burgers' equation, is described. The aim of optimal control is to find the best parameters of the model which ensure the closest simulation to the observed values. In a more general case, the continuous problem and the corresponding discrete form are formulated. Three kinds of simulation are realized to validate the method. Optimal control processes by initial and boundary conditions require an implicit discretization scheme on the first time step and a decentered one for the non-linear advection term on boundaries. The robustness of the method is tested with a noised dataset and random values of the initial controls. The optimization process of the viscosity coefficient as a time- and space-dependent variable is more difficult. A numerical study of the model sensitivity is carried out. Finally, the numerical application of the simultaneous control by the initial conditions, the boundary conditions and the viscosity coefficient allows a possible influence between controls to be taken into account. These numerical experiments give methodological rules for applications to more complex situations. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a numerical method for modeling the micromechanical behavior and macroscopic properties of fiber-reinforced composites and perforated materials. The material is modeled by a finite rectangular domain containing multiple circular holes and elastic inclusions. The rectangular domain is assumed to be embedded within a larger circular domain with fictitious boundary loading represented by truncated Fourier series. The analytical solution for the complementary problem of a circular domain containing holes and inclusions is obtained by using a combination of the series expansion technique with a direct boundary integral method. The boundary conditions on the physical external boundary are satisfied by adopting an overspecification technique based on a least squares approximation. All of the integrals arising in the method can be evaluated analytically. As a result, the elastic fields and effective properties can be expressed explicitly in terms of the coefficients in the series expansions. Several numerical experiments are conducted to verify the accuracy and efficiency of the numerical method and to demonstrate its application in determination of the macroscopic properties of composite materials.  相似文献   

18.
A novel nonreflecting boundary condition, which converges to the specified time‐dependent boundary condition within any degree of accuracy, is introduced for the numerical simulation of hyperbolic systems and validated against the solution of two fundamental boundary value problems in fluids. First, transonic nozzle flow with backward acoustic disturbance is considered. Using high‐order aeroacoustic numerical schemes, the proposed nonreflecting boundary condition yields results that are in excellent agreement with those obtained using conventional nonreflecting boundary conditions based on the method of characteristics as well as with the results of the exact solution. The novel nonreflecting boundary condition, implemented into a semi‐analytical solution algorithm of unsteady bubbly cavitating nozzle flows, is also validated against results obtained using a Lagrangian finite volume scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The problem of steady radial vibrations of a thin electroelastic hollow disk in the presence of a preliminary inhomogeneous plane stress–strain state is solved. Vibrations are induced by applying a potential difference across the electrodes placed on the end surfaces of the disk. Equations of the vibrations and boundary conditions are formulated. The preliminary stress state corresponding to the solution of the Lam´e problem was investigated. The direct problem of determining the displacement function is solved numerically by the shooting method. The inverse problem of determining a pre-stress parameter from the change in the natural frequency of the disk is formulated and solved. The accuracy of determining the prestressed state for initial data specified with an error is analyzed.  相似文献   

20.
A linear three‐dimensional hydrodynamical numerical model, with the application of the Galerkin Method for the vertical dependence, is here presented. The spherical coordinate system is used, in order to allow large‐scale simulations. The equations and mathematical development of the model are shown in detail, together with the boundary and initial conditions, and the sequence of equations' solution. The model is applied to the South Atlantic Ocean, for estimating typical seasonal circulations, and the results are summarized in maps of currents at surface and 1000 m depth, and in transport values of the Brazil Current between 30°S and 40°S. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号