首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A specific and sensitive method was developed and validated to quantitatively analyze four tobacco-specific nitrosamines (TSNAs) in the particulate phase of mainstream cigarette smoke. Cigarette smoke particulate matter was collected according to ISO 4387. The particulate matter was extracted with acetic ether, cleaned up with a Supelclean ENVI-Carb silod-phase extraction (SPE) cartridge, concentrated under the protection of nitrogen and analyzed by gas chromatography (GC)/ion trap mass spectrometry (MS) with a very-low-flow-loss column (VF-17 MS) in MS(n) mode using N-nitrosopentyl-3-picolylamine (NNPA) as an internal standard. TSNAs were identified by chromatographic retention time, matching the spectra of the standards and the samples and the consistency of the ratio of the abundance of the ions detected in the standards and the samples. Limits of detection of each TSNA varied from 0.01 to 0.06 ng/cig. A linear calibration range for this method is large enough to measure TSNA levels in cigarette smoke. The recovery of each TSNA was from 91.5 to 102.7%. The method achieved excellent reproducibility (RSD: 1.8-4.8% for intra-assay, 3.4-7.1% for inter-assay). It also shows no evidence of artifact formation. This method is very suitable for the routine detection of TSNAs in mainstream cigarette smoke.  相似文献   

2.
A heart‐cutting two dimensional liquid chromatography coupled with tandem mass spectrometry method was developed for the analysis of tobacco‐specific N‐nitrosamines (TSNAs) at low concentration level in Virginia‐type cigarette smoke. A strong cation exchange column was utilized for the first dimensional separation, which effectively removed acidic and neutral components in the smoke, followed by a reversed phase liquid chromatography coupled with tandem mass spectrometric analysis. To capture components of the TSNAs in the effluent on the trapping column, a compensating pump was applied for online dilution and pH adjustment during the period of the TSNAs fraction transferring and enrichment. Highly sensitive determination of the TSNAs in mainstream cigarette smoke was achieved by isotope deuterated internal standards under the multiple reaction monitoring mode. Compared with traditional methodologies, the method was almost no matrix interference. Limits of quantity for the TSNAs were within 0.027–0.094 ng/mL, and the results showed good reproducibility and accuracy. Finally, the new method was applied for analysis of the Kentucky reference cigarettes and the results agreed well with joint experiments of Cooperation Centre for Scientific Research Relative to Tobacco.  相似文献   

3.
Tobacco‐specific N‐nitrosamines (TSNAs), including N′‐nitrosonornicotine, 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanone, N′‐nitrosoanatabine, and N′‐nitrosoanabasine, have been implicated as a source of carcinogenicity in tobacco and cigarette smoke. We present a rapid and effective method comprising SPE based on tetraazacalix[2]arene[2]triazine‐modified silica as sorbent and analysis with HPLC–MS/MS for the determination of TSNAs and 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanol (NNAL), a metabolite of 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanone, in rabbit plasma. The linear dynamic ranges were 10–2000 pg/mL for NNAL and 4–2000 pg/mL for the four TSNAs with good correlation coefficients (>0.9965). The LODs were in the range of 0.9–3.7 pg/mL, and the LOQs were between 2.9 and 12.3 pg/mL. The accuracies of the method were also evaluated and found to be in the range of 90.1–113.3%. This method is promising to be applied to the preconcentration and determination of TSNAs and NNAL in smoke and human body fluids.  相似文献   

4.
A liquid chromatography tandem mass spectrometry (LC/MS/MS) method was developed and validated for the determination of five total tobacco‐specific N‐nitrosamines (TSNA), including free and conjugated forms in urine. The limits of detection for 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanol, N′‐nitrosonornicotine, 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanone, N′‐nitrosoanatabine and N′‐nitrosoanabasine were 0.6, 0.6, 10.0, 0.4 and 0.4 pg/mL, respectively, with a linear calibration range of up to 20,000 pg/mL. Intra‐ and inter‐day precision for TSNA measurements ranged from 0.82 to 3.67% and from 2.04 to 7.73% respectively. For total TSNAs, the β‐glucuronidase amount was optimized for hydrolysis time and yield. Different liquid chromatography columns and mobile phases with different pH conditions were evaluated. The validated method was then applied to 50 smoker and 30 nonsmoker urine samples. Our results suggest that this sensitive and relatively simple analytical method is suitable for application to epidemiological investigations of health risks associated with the exposure to tobacco smoke or secondhand smoke in both smokers and nonsmokers. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

5.
A rapid method for the selective determination of four kinds of tobacco‐specific nitrosamines, N‐nitrosonornicotine, N‐nitrosoanatabine, N‐nitrosoanabasine and 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanone, in mainstream cigarette smoke was developed by GC coupled to positive chemical ionization triple‐quadrupole MS. After mainstream cigarette smoke was collected on a cambridge filter pad, the particulate matter was extracted with 0.1 M HCL aqueous solution, cleaned by positive cation‐exchange solid extraction, and finally injected into GC–MS/MS using isotopically labeled analogues as internal standards. Excellent linearity was obtained over the concentration range of 0.5–200.0 ng mL?1 for all tobacco‐specific nitrosamines with values for correlation coefficient between 0.9996–0.9999. Limits of detection of each tobacco specific nitrosamine varied from 0.023–0.028 ng cig?1, and lower limits of quantification varied from 0.077–0.093 ng cig?1. The recovery of each tobacco specific nitrosamine was from 90.0–109.0%. The relative standard deviations of the intra‐day and inter‐day precisions were 3.1–5.8 and 3.9–6.6, respectively. This method was applied to reference and domestic cigarettes. The result showed that the method was consistent with traditional methods and can be used as an effective approach for the routine analysis of tobacco‐specific nitrosamines.  相似文献   

6.
Tobacco‐specific N‐nitrosamines are carcinogenic components in mainstream cigarette smoke. To explore tobacco‐specific N‐nitrosamine release levels in cigarettes, a magnetic solid‐phase extraction procedure using magnetic graphene composite as sorbent for fast enrichment of tobacco‐specific N‐nitrosamine was developed. Under optimal conditions, a tobacco‐specific N‐nitrosamine determination method was successfully proposed by combining magnetic solid‐phase extraction procedure and high‐performance liquid chromatography coupled with tandem mass spectrometry. The method's limit of detection for tobacco‐specific N‐nitrosamines in mainstream cigarette smoke ranged from 0.018 to 0.057 ng/cigarette. Good linearities were obtained with correlation coefficients above 0.9992. The accuracies of tobacco‐specific N‐nitrosamines in a spiked mainstream cigarette smoke sample were from 89.3 to 109.4%, with a relative standard deviation of less than 11.2%. The proposed method has the merits of rapidity and high sensitivity. Finally, the method was successfully applied to tobacco‐specific N‐nitrosamine analysis in real samples.  相似文献   

7.
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for determining four tobacco-specific N-nitrosamines (TSNAs) in mainstream smoke from Chinese Virginia cigarettes was developed. Mainstream cigarette smoke particulate matter was collected on a Cambridge filter pad, further extracted using 100 mM ammonium acetate after 100 μL internal standard addition, and subsequently analyzed with LC-MS/MS. The limit of detection for NNN, NNK, NAT and NAB were 0.006, 0.013, 0.003 and 0.021 ng mL−1 respectively, with a linear calibration range spanning 1-200 ng mL−1. Intra- and inter-day precision for four TSNAs ranged from 3.3% to 8.5% and 2.3% to 10.1%; recovery was between 89.1% and 104.9% for Chinese Virginia cigarettes. The proposed method was applied to evaluate TSNAs yields for 39 commercially available cigarettes in Chinese market under ISO and “Canadian intense” machine smoking regimes, on the ground that it comes closest to representing smoke deliveries from human smoking. Total TSNAs emissions are more than double under the Canadian regime. TSNAs:nicotine ratios were used in our assay to show any differences in yield from different brands. TSNAs:nicotine levels show more than a 10-fold difference across brands and types (Chinese Virginia cigarettes and blended cigarettes) in the Chinese market.  相似文献   

8.
Active and passive smoking are serious public health concerns Assessment of tobacco smoke exposure using effective biomarkers is needed. In this study, we developed a simultaneous determination method of five tobacco-specific nitrosamines (TSNAs) in hair by online in-tube solid-phase microextraction (SPME) coupled to liquid chromatography-tandem mass spectrometry (LC–MS/MS). TSNAs were extracted and concentrated on Supel-Q PLOT capillary by in-tube SPME and separated and detected within 5 min by LC–MS/MS using Capcell Pak C18 MGIII column and positive ion mode multiple reaction monitoring systems. These operations were fully automated by an online program. The calibration curves of TSNAs showed good linearity in the range of 0.5–1000 pg mL–1 using their stable isotope-labeled internal standards. Moreover, the limits of detection (S/N = 3) of TSNAs were in the range of 0.02–1.14 pg mL–1, and intra-day and inter-day precisions were below 7.3% and 9.2% (n = 5), respectively. The developed method is highly sensitive and specific and can easily measure TSNA levels using 5 mg hair samples. This method was used to assess long-term exposure levels to tobacco smoke in smokers and non-smokers.  相似文献   

9.
Tobacco-specific nitrosamines (TSNAs) are some of the most potent carcinogens in tobacco and cigarette smoke. Accurate quantification of these chemicals is needed to help assess public health risks. We developed and validated a specific and sensitive method to measure four TSNAs adsorbed to model surfaces and secondhand smoke (SHS) particles using gas chromatography–ion-trap tandem mass spectrometry. In an 18-m3 room-sized chamber, a smoking machine generated realistic concentrations of SHS that were actively sampled on Teflon-coated fiber glass (TCFG) filters, and passively sampled on cellulose substrates. A simple solid–liquid extraction protocol using methanol as solvent was successfully applied to both substrates with recoveries ranging from 85 to 115%. For each TSNA, tandem MS parameters were optimized and the major fragmentation pathways were elucidated. The method showed excellent performance, with a linear dynamic range from 2 to 1000 ng mL−1, low detection limits (S/N > 3) of 30–300 pg mL−1 and precision with experimental errors below 10% for all compounds. Moreover, no interfering peaks were observed, indicating a high selectivity of MS/MS without the need for a sample clean-up step. This method provides a suitable analytical tool to detect and quantify traces of TSNA in indoor environments polluted with SHS.  相似文献   

10.
建立了一种固相萃取-超高效液相色谱法(SPE-UPLC)快速检测主流烟气中丙烯酰胺的方法。使用剑桥滤片和吸收瓶捕集主流烟气后,蒸馏水做萃取溶剂,采用C18固相萃取小柱对样品液进行纯化,用UPLC检测,外标法定量。UPLC方法采用ACQUITY UPLCTMBEH C181.7μm 2.1×50 mm色谱柱,柱温30℃,流动相为V(乙腈)∶V(水)=6∶94,流速为0.15 mL/min,紫外检测器(TUV)检测波长为202 nm,分析时间为6 min。烤烟型香烟主流烟气中丙烯酰胺的含量为4.75μg/cig。方法的线性范围为0.1~10 mg/mL,线性相关系数为0.9999;平均回收率为98.7%;检出限为10 ng/mL(S/N=3);相对标准偏差为2.3%。该方法适合主流烟气中丙烯酰胺的快速检测。  相似文献   

11.
A simple, rapid and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for the determination of alosetron (ALO) in human plasma. The assay method involved solid‐phase extraction of ALO and ALO 13C‐d3 as internal standard (IS) on a LichroSep DVB‐HL (30 mg, 1 cm3) cartridge. The chromatography was performed on an Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile and 2.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (80:20, v/v) as the mobile phase in an isocratic mode. For quantitative analysis, the multiple reaction monitoring transitions studied were m/z 295.1/201.0 for ALO and m/z 299.1/205.1 for IS in the positive ionization mode. The method was validated over a concentration range of 0.01–10.0 ng/mL for ALO. Post‐column infusion experiment showed no positive or negative peaks in the elution range of the analyte and IS after injection of extracted blank plasma. The extent of ion‐suppression/enhancement, expressed as IS‐normalized matrix factor, varied from 0.96 to 1.04. The assay recovery was within 97–103% for ALO and IS. The method was successfully applied to support a bioequivalence study of 1.0 mg alosetron tablets in 28 healthy Indian male and female subjects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A simple, sensitive and specific ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method was developed and validated to determine the concentrations of 7‐hydroxymitragynine in rat plasma. Following a single‐step liquid–liquid extraction of plasma samples using chloroform, 7‐hydroxymitragynine and the internal standard (tryptoline) were separated on an Acquity UPLCTM BEH C18 (1.7 µm, 2.1 × 50 mm) column using an isocratic elution at a flow rate of 0.2 mL/min. The mobile phase consisted of 0.1% acetic acid in water and 0.1% acetic acid in acetonitrile (10:90, v/v). The run time was 2.5 min. The analysis was carried out under the multiple reaction‐monitoring mode using positive electrospray ionization. Protonated ions [M + H]+ and their respective product ions were monitored at the following transitions: 415 → 190 for 7‐hydroxymitragynine and 173 → 144 for the internal standard. The calibration curve was linear over the range of 10–4000 ng/mL (r2 = 0.999) with a lower limit of quantification of 10 ng/mL. The extraction recoveries ranged from 62.0 to 67.3% at concentrations of 20, 600 and 3200 ng/mL). Intra‐ and inter‐day assay precisions (relative standard deviation) were <15% and the accuracy was within 96.5–104.0%. This validated method was successfully applied to quantify 7‐hydroxymitragynine in rat plasma following intravenous administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A novel method for the screening of 151 drugs of abuse and toxic compounds in human whole blood has been developed and validated by online solid‐phase extraction with liquid chromatography coupled to time‐of‐flight mass spectrometry. Analytes were extracted and separated by using a fully automated online solid‐phase extraction liquid chromatography system with total chromatographic run time of 26 min. Time‐of‐flight mass spectrometry screening of 151 drugs of abuse and toxic compounds was performed in a full‐scan (m/z 50–800) mode using an MSE acquisition of molecular ions and fragment ions data at two collision energies (one was 6 eV and another one was in the range of 5–45 eV). The compounds were identified based on retention times and exact mass of molecular ions and fragment ions. The limit of detection ranged from 1 to 100 ng/mL and the recovery of the method ranged from 6.3 to 163.5%. This method is proved to be a valuable screening method allowing fast and specific identification of drugs in human whole blood.  相似文献   

14.
A thalidomide analog, (4‐(1,3‐dioxo‐1,3‐dihydro‐2H‐isoindol‐2‐yl)‐N ′‐[(4‐ethoxyphenyl) methylidene] benzohydrazide), has been identified as a promising broad‐spectrum anti‐inflammatory agent in previous study. In this study, a sensitive and selective UPLC‐MS/MS assay was developed and validated for its determination in rat plasma samples. The chromatographic separation was performed on an Aquity BEH C18 column using mobile phase comprising of acetonitrile and 10 mm ammonium acetate in the ratio of 85: 15, at flow rate of 0.3 mL/min. The detection and quantification were performed in positive multiple reaction monitoring mode by parent to daughter ion transition of 414.06 ˃ 148.05 for analyte and 411.18 ˃ 191.07 for internal standard (risperidone), respectively using electrospray ionization source. The sample extraction process consisted of liquid–liquid extraction method using diethyl ether as the extracting solvent. The assay was validated by following FDA guidelines and all parameters were found to be within acceptable limits. The linearity was between 10.1 and 2500 ng/mL and the lower limit of quantification was 10.1 ng/mL. The reported results indicate that the assay could meet the requirement for analysis of this compound in amounts expected to the present in actual samples. Further, in vitro metabolic stability study was performed in rat liver microsomes by using the validated assay.  相似文献   

15.
Cigarette smoke is known to interact with tamoxifen‐metabolizing enzymes and transporters and potentially affect its treatment outcome. 4‐(N‐ nitrosomethylamino)‐1‐(3‐pyridyl)‐1‐butanol (NNAL) is an important metabolite of 4‐(methylnitro‐samino)‐1‐(3‐pyridyl)‐1‐butanone (NNK) because it is frequently used as a biomarker to assess human smoke exposure. In order to study the potential pharmacokinetic interaction between cigarette smoke and tamoxifen in rats a UPLC‐MS/MS method for the simultaneous determination of NNAL and tamoxifen along with its metabolites in rat plasma has been developed and validated. Analytes were extracted with methanol and separated on a HSS T3 column by a gradient elution with the mobile phase consisting of acetonitrile and water. The lower limits of quantitation ranged from 0.05 to 0.62 ng/mL. Precisions showed RSD <15.8% and accuracy in the range 80.6–116.0%. Mean analyte recoveries ranged from 76.9 to 108.4%. The method was successfully applied to study the effects of cigarette smoke condensate (CSC), NNK and benzo(a)pyrene pre‐treatment on the pharmacokinetics of tamoxifen and its metabolites in rats. Significant effects of CSC, NNK, benzo(a)pyrene were observed on pharmacokinetics of tamoxifen and its metabolites. We also found that plasma NNAL levels are statistically significant correlated with plasma 4‐hydroxy‐tamoxifen and endoxifen.  相似文献   

16.
Forsythia suspensa contains C6‐C2 glucoside conjugates (CCGCs) that are chemically unstable, thereby hindering their isolation and purification. In the present study, ultra‐performance liquid chromatography‐quadrupole time‐of‐flight mass spectrometry (UPLC‐QTOF) was utilized to screen and identify unstable CCGCs in the fruits and leaves of F. suspensa without any tedious isolation and purified process based on independent information acquisition (also called MSE) and individual MS/MS experiments. Diagnostic product ion filtering (DPIF) was further applied to mine unknown analogs in MSE high energy levels based on characteristic m/z of key substructures. A modified nomenclature for CCGCs is hereby proposed to facilitate discussions. Possible fragmentation pathways of major types of known CCGCs were proposed and used for deducing their structures. A total of 8 potentially new CCGCs were discovered and initially identified. The accuracy of their identification was further verified by structural elucidation of 3 unstable CCGCs isolated from the fruits of F. suspensa using 1D and 2D‐NMR spectroscopy. The established UPLC‐QTOF‐MSE‐based DPIF technique facilitates the rapid discovery and direct identification of unstable CCGCs in fruits and leaves of F. suspensa .  相似文献   

17.
Reactive metabolites are thought to play a pivotal role in the pathogenesis of some drug‐induced liver injury (DILI) and idiosyncratic adverse drug reactions (IADRs), which is of concern to patient safety and has been a cause of drugs being withdrawn from the market place. To identify drugs with a lower propensity for causing DILI and/or IADRs, high‐throughput assays to capture reactive metabolites are required in pharmaceutical industry for early drug discovery risk assessment. We describe the development of an assay to detect glutathione adducts with combined high sensitivity, enhanced specificity, and rapid data analysis. In this assay, compounds were incubated with human liver microsomes and a mixture of 1:1 of GSH (γ‐GluCysGly): GSX(γ‐GluCysGly‐13C215N) in a 96‐well plate format. UPLC‐UV and LTQ Orbitrap XL were employed to detect GSH‐adducts using the following mass spectrometry setups: (a) selected ion monitoring (SIM) at m/z of 274 ± 3 Da in negative mode with in‐source fragmentation (SCID), which enables simultaneously monitoring two characteristic product ions of m/z 272.0888 (γ‐glutamyl‐dehydroalanyl‐glycine) and 275.0926 (γ‐glutamyl‐dehydroalanyl‐glycine‐13C215N); (b) full scan mode for acquisition of exact mass of glutathione adducts; (c) data‐dependent MS2 scan through isotopic matching (M:M + 3.00375 = 1:1) for monitoring neutral loss fragments (144 Da from dehydroalanyl‐glycine) and for structural information of glutathione adducts. This approach was qualified using eight compounds known to form GSH conjugates as reported in the literature. The high sensitivity and specificity were demonstrated in identifying unique CysGly adducts in the case of clozapine, diclofenac, and raloxifene and in identifying GSH‐adducts of fragmented parent molecules in the case of amodiaquine and troglitazone. In addition, LC‐UV chromatograms in the presence or absence of GSH/GSX allowed for identification of the rearranged glutathione adducts without aforementioned characteristic fragment ions. Implement of this assay in drug discovery small molecule programs has successfully guided drug design.  相似文献   

18.
Blood concentrations of tacrolimus show large variability among patients and the narrow therapeutic range is related to adverse effects. Therefore, therapeutic drug monitoring is needed for strict management. 13‐O‐Demethyl tacrolimus (13‐O‐DMT) was reported as the major metabolite formed by cytochrome P450 (CYP)3A such as CYP3A5. In previous studies, the best lower limit of quantification (LLOQ) was 0.1 ng/mL for both substances. However, this LLOQ may not be low enough now because the dosage of tacrolimus has decreased in recent years. The purpose of this study was to develop and validate a high‐sensitivity and high‐throughput assay for simultaneous quantification of tacrolimus and 13‐O‐DMT in human whole blood using ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC–MS/MS). Thirty‐five stable kidney transplant recipients receiving tacrolimus were recruited in this study. The calibration curve range was 0.04–40 ng/mL. All calibration samples and quality control samples fulfilled the requirements of the US Food and Drug Administration and the European Medicines Agency guidelines for assay validation. Trough concentrations of tacrolimus and 13‐O‐DMT in 35 stable kidney transplant recipients receiving tacrolimus were within the range of the respective calibration curve. Our novel UPLC–MS/MS method is more sensitive than previous methods for quantification of tacrolimus and 13‐O‐DMT.  相似文献   

19.
Fast and efficient ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) analysis of short interfering RNA oligonucleotides was used for identity confirmation of the target sequence‐related impurities. Multiple truncated oligonucleotides and metabolites were identified based on the accurate mass, and their presumed sequence was confirmed by MS/MS and MSE (alternating low and elevated collision energy scanning modes) methods. Based on the resulting fragmentation of native and chemically modified oligonucleotides, it was found that the MSE technique is as efficient as the traditional MS/MS method, yet MSE is more general, faster, and capable of producing higher signal intensities of fragment ions. Fragmentation patterns of modified oligonucleotides were investigated using RNA 2′‐ribose substitutions, phosphorothioate RNA, and LNA modifications. The developed sequence confirmation method that uses the MSE approach was applied to the analysis of in vitro hydrolyzed RNA oligonucleotide. The target RNA and metabolites, including the structural isomers, were resolved by UPLC, and their identity was confirmed by MSE. Simultaneous RNA truncations from both termini were observed. The UPLC quadrupole time‐of‐flight (QTOF) MS/MS and MSE methods were shown to be an effective tool for the analysis and sequence confirmation of complex oligonucleotide mixtures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
LC-MS-MS法测定卷烟侧流烟气中的亚硝胺   总被引:2,自引:0,他引:2  
采用鱼尾罩和剑桥滤片捕集卷烟侧流烟气中的粒相颗粒物,建立了LC-MS-MS法测定卷烟侧流烟气中4种烟草特有的亚硝胺TSNAs(NNN,NAT,NAB,NNK)。剑桥滤片在醋酸铵水溶液中机械振荡40min后提取萃取液,萃取液经0.22μm滤膜过滤后,直接进LC-MS-MS分析。鱼尾罩壁上的冷凝物用甲醇溶液清洗,洗液通过氮吹浓缩后,采用PCX固相萃取小柱净化进样分析。测定方法的检测限为0.09~0.25ng/mL,线性相关系数均大于0.996,4种TSNAs的回收率均在88.2%~110.2%之间,相对标准偏差RSD均小于7%。方法适合作为卷烟侧流烟气中四种烟草特有亚硝胺(TSNAs)的定量分析方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号