首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dedicated to Dr. János Császár on the occasion of his 70th birthday Ring transformation of 2‐cyanoimido‐3‐methyl‐1,3‐oxazolidine ( 10 ) yielded 5‐amino‐3‐[N‐(2‐hydrox‐yethyl)‐N‐methyl]amino‐1H‐1,2,4‐triazole ( 6 ) that was ring closed with different β‐keto esters to 2‐[N‐(2‐hydroxyethyl)‐N‐methyl]amino‐1,2,4‐triazolo[1,5‐a]pyrimidinones ( 4 ). Cyclisation of derivatives 4 led to imidazo[2′,1′:3,4][1,2,4]triazolo[1,5‐a]pyrimidines ( 2 ) and imidazo[1′,2′:2,3][1,2,4]triazolo[1,5‐a]pyrim‐idines ( 3 ) representing 10 novel ring systems. Besides spectroscopical evidence of structure of derivatives 2 and 3 X‐ray diffraction analysis of derivative 2b was also performed.  相似文献   

2.
A series of eleven new 2‐methylthio‐3H‐7‐[(o‐; m‐ and p‐substituted) phenoxy]‐4‐(p‐substituted‐phenyl)‐[1,5]benzodiazepines, which have potentially useful pharmacological activities, has been synthesized by condensing the 4‐[(o‐; m‐ and p‐R1)phenoxy]‐1,2‐phenylendiamines with 3,3‐dimercapto‐1‐(p‐R2‐phenyl)‐2‐propen‐1‐one. Afterward the lH‐[1,5]benzodiazepine‐2‐thiones obtained were treated with sodium hydride and methyl iodide. The structure of all products was corroborated by ir, 1H nmr, 13C nmr and ms.  相似文献   

3.
In this paper the reaction of 2‐(2′‐thienylmethylene)‐3,4‐dihydronaphthalen‐2(1H)‐one ( 1 ) with cyanothioacetamide gave a mixture of 3‐cyano‐5,6‐dihydro‐4‐(2′‐thienyl)‐benzo[h]quinolin‐2(1H)‐thione ( 2 ) and the related disulfide 3 . Compound 2 was reacted with some halo compounds namely; ethyl chloroacetate, chloroacetamide, chloro(N‐(p‐chlorophenyl))acetamide, N1‐chloroacetylsulfanilamide, and 2‐chloromethyl‐1H‐benzimidazole to produce a series of 2‐(substituted)methylthio‐3‐cyano‐5,6‐dihydro‐4‐(2′‐thienyl)benzo[h]quinolines 4a , 4b , 4c , 4d , 4e and 11 . Upon heating the latter compounds with sodium ethoxide, they underwent intramolecular Thorpe–Zeigler cyclization to furnish the corresponding 2‐(substituted)‐3‐amino‐5,6‐dihydro‐4‐(2′‐thienyl)‐benzo[h]thieno[2,3‐b]quinolines 5a , 5b , 5c , 5d , 5e and 12 . (3‐Cyano‐5,6‐dihydro‐4‐(2′‐thienyl)‐benzo[h]quinolin‐2‐ylthio)acethydrazide ( 8 ) and the related isomer, 3‐amino‐5,6‐dihydro‐4‐(2′‐thienyl)thieno[2,3‐b]benzo[h]quinoline‐2‐carbohydrazide ( 9 ), were also synthesized. Most of the aforementioned compounds were used as key intermediates for synthesizing other benzo[h]quinolines, benzo[h]thieno[2,3‐b]quinolines as well as benzo[h]pyrimido[4′,5′:4,5] thieno[2,3‐b]quinolines. The structure of all synthesized compounds was confirmed by spectroscopic measurements and analytical analyses.  相似文献   

4.
A new series of 4‐(4‐methylpiperazin‐1‐yl)thieno[2,3‐b][1,5]benzoxazepines 1a‐k has been synthesized from 4‐bromo‐2‐methylthiophene 6 or ethyl 2‐amino‐4,5‐dimethyl‐3‐thiophencarboxylate 10 . Preparation of the key intermediate thieno[2,3‐b][1,5]benzoxazepine‐4(5H)‐ones 4a‐i, 4k were carried out by treatment of 2‐bromo‐N‐(2‐hydroxyphenyl)‐3‐thiophencarboxamides 5a‐i, 5k with potassium carbonate in DMSO. Compounds 1 are thienoanalogues of loxapine, a potent antipsychotic drug. Of these compounds, the neu‐roleptic activity of 2‐methyl‐4‐(4‐methylpiperazin‐l‐yl)thieno[2,3‐b][1,5]benzoxazepine 1a (R1, R3=H, R2=CH3) demonstrated potent antipsychotic activity.  相似文献   

5.
Some 1,4‐phenylene‐bis[1,2,4]oxadiazolo‐[5,4‐d][1,5]benzothiazepine derivatives ( 4a , 4b , 4c ) were synthesized by 1,3‐dipolar cycloaddition reaction of benzohydroximinoyl chloride with 1,4‐phenylene‐bis(4‐aryl)‐2,3‐dihydro[1,5]benzothiazepine ( 2a , 2b , 2c ); meanwhile, compounds 2a , 2b , 2c also occurred ring contraction under acylating condition to obtain bis[2‐aryl‐2′‐(β‐1,4‐phenylenevinyl)‐3‐acetyl]‐2,3‐dihydro[1,5]benzothiazoles ( 3a , 3b , 3c ). The structures of some novel compounds were confirmed by IR, 1H‐NMR, elemental, and X‐ray crystallographic analysis.  相似文献   

6.
Several derivatives of the novel benzo[b]pyrazolo[5′,1′:2,3]pyrimido[4,5‐e][1,4]thiazine ring system have been synthesized through the one‐pot cyclocondensation of 6‐bromo‐7‐chloro‐2‐(ethylthio)‐5‐methylpyrazolo[1,5‐a]pyrimidine‐3‐carbonitrile ( 4 ) with o‐aminothiophenol in the presence of Et3N in CH3CN. The true regio isomer ( 5 ) was also determined by X‐ray crystallographic analysis. The N‐alkylation of the synthesized compound ( 5 ) was also accomplished.  相似文献   

7.
Diaminomethylene- and aminomethylthiomethylenehydrazones [2] of cyclic ketones 1–8 readily reacted with ethoxymethylenemalononitrile to give spiro[cycloalkane-1,2′-[1,2′,4′]triazolo[1,5′-c]pyrimidine-8′-carbonitrile] derivatives 12–19 through the electrocyclic reaction of the initially formed condensation products 26 in moderate to high yields. The spiro[cyclopentanetriazolopyrimidine] derivatives underwent ring-opening at the cycloalkane moiety upon heating in solution to give 2-alkyl-5-substituted-[1,2,4]triazolo[1,5-c]pyrimidine-8′-carbonitriles 20–23 . When an alkyl substituent was introduced into the cyclopentane ring, cleavage of the spiro compounds occurred preferentially at the cyclopentane moiety between the spiro carbon and the more branched one. In contrast, the cyclohexane ring, especially of spiro-5-amino-triazolopyrimidines 17 and 18 strongly resisted to ring-opening under similar conditions, but those of 5-methylthiotriazolopyrimidines 14 gave up to 17 percent of cleavage after prolonged heating in hot ethanol. 2-t-Butyl-5-methylthio-2,3-dihydro[1,2,4]triazolo[1,5-c]pyrimidine-8-carbonitrile 25 [R3 = C(CH3)3] was highly susceptible to the cleavage even at room temperature and produced the corresponding 2-unsubstituted triazolopyrimidine 24 with loss of the t-butyl group.  相似文献   

8.
Previously unknown 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazoline]‐2,2′‐(7′H)‐diones and their N‐substituted analogues were obtained via reaction of 6‐R1‐3‐(2‐aminophenyl)‐1,2,4‐triazin‐5‐ones with isatin and its substituted derivatives. It was shown that alkylation of 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazolin]‐2,2′‐(7′H)‐diones by N‐R3‐chloroacetamides or chloroacetonitrile in the presence of а base proceeds by N‐1 atom of isatin fragment. The spectral properties (1H and 13C NMR spectra) of synthesized compounds were studied, and features of spectral patterns were discussed. The high‐effective anticonvulsant and radical scavenging agents among 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazolin]‐2,2′(7′H)‐diones and their N‐substituted derivatives were detected. It was shown that compounds 2.2 , 2.8 , and 3.1 exceed or compete the activity of the most widely used in modern neurology drug—lamotrigine on the pentylenetetrazole‐induced seizures model. The aforementioned fact may be considered as a reason for further profound study of synthesized compounds using other pathology models.  相似文献   

9.
A diversity of new 7 ‐substituted[1,2,4]triazolo[1,5‐a]pyrimidine and 6‐substituted[1,2,4]triazolo[1,5‐a]pyrimidine‐7‐amine derivatives has been synthesized via reaction of 3‐amino‐[1,2,4]triazole with enaminonitriles and enaminones. The regio orientation and the structure of the products were confirmed by spectral and analytical data and synthesis via an alternative route. The procedure proved to be simple, efficient, and high yielding, and diversities of [1,2,4]triazolo[1,5‐a]pyrimidines were obtained.  相似文献   

10.
The reaction of the organolithium derivative {2, 6‐[P(O)(OEt)2]2‐4‐tert‐Bu‐C6H2}Li ( 1 ‐Li) with [Ph3C]+[PF6] gave the substituted biphenyl derivative 4‐[(C6H5)2CH]‐4′‐[tert‐Bu]‐2′, 6′‐[P(O)(OEt)2]2‐1, 1′‐biphenyl ( 5 ) which was characterized by 1H, 13C and 31P NMR spectroscopy and single crystal X‐ray analysis. Ab initio MO‐calculations reveal the intramolecular O···C distances in 5 of 2.952(4) and 2.988(5)Å being shorter than the sum of the van der Waals radii of oxygen and carbon to be the result of crystal packing effects. Also reported are the synthesis and structure of the bromine‐substituted derivative {2, 6‐[P(O)(OEt)2]2‐4‐tert‐Bu]C6H2}Br ( 9 ) and the structure of the protonated ligand 5‐tert‐Bu‐1, 3‐[P(O)(OEt)2]2C6H3 ( 1 ‐H). The structures of 1 ‐H, 5 , and 9 are compared with those of related metal‐substituted derivatives.  相似文献   

11.
A novel method for the preparation of chromogenic calixarenes with azo groups was reported.p-Substituted(-NO2,-CH3,-Cl)amilines were diazotized with isoamyl nitrite in EtONa/EtOH under refluxing condition.Fifteen mono-,bis-,tris-and tetrakis(p-substituted phenyl)azo calix[4]arenes (including proximal and distal isomers) were obtainged respectively by diazo-coupling in different molar ratio to calix[4]arenes(1) under pH=7.5-9.0 in non-aqueous solution at 0-5℃.^1H NMR and ^13C NMR spectra of (p-substtituted phenyl)azo calix[4]-arenes indicated that they existed in cone conformation in solution.  相似文献   

12.
Indium‐bridged [1]ferrocenophanes ([1]FCPs) and [1.1]ferrocenophanes ([1.1]FCPs) were synthesized from dilithioferrocene species and indium dichlorides. The reaction of Li2fc?tmeda (fc=(H4C5)2Fe) and (Mamx)InCl2 (Mamx=6‐(Me2NCH2)‐2,4‐tBu2C6H2) gave a mixture of the [1]FCP (Mamx)Infc ( 41 ), the [1.1]FCP [(Mamx)Infc]2 ( 42 ), and oligomers [(Mamx)Infc]n ( 4 n ). In a similar reaction, employing the enantiomerically pure, planar‐chiral (Sp,Sp)‐1,1′‐dibromo‐2,2′‐diisopropylferrocene ( 1 ) as a precursor for the dilithioferrocene derivative Li2fciPr2, equipped with two iPr groups in the α position, gave the inda[1]ferrocenophane 51 [(Mamx)InfciPr2] selectively. Species 51 underwent ring‐opening polymerization to give the polymer 5 n . The reaction between Li2fciPr2 and Ar′InCl2 (Ar′=2‐(Me2NCH2)C6H4) gave an inseparable mixture of the [1]FCP Ar′InfciPr2 ( 61 ) and the [1.1]FCP [Ar′InfciPr2]2 ( 62 ). Hydrogenolysis reactions (BP86/TZ2P) of the four inda[1]ferrocenophanes revealed that the structurally most distorted species ( 51 ) is also the most strained [1]FCP.  相似文献   

13.
Substituted pyrazolo[1,5‐a]pyrimidine ligands were synthesized by cyclization, using 3‐(thiophen‐2‐yl)‐1H‐pyrazol‐5‐amine with substituted enones (3‐phenyl‐1‐(pyridin‐2‐yl)prop‐2‐en‐1‐one) in presence of KOH and DMF as solvent to form cyclic aromatic compounds. The substituted pyrazolo[1,5‐a] pyrimidine based binuclear PtII complexes containing neutral tetradentated ligands have general formula [Pt2(5a–5f)Cl4], (where, (5a ‐5f) = pyrazolo[1,5‐a] pyrimidine ligand). This compounds were characterized by physicochemical and spectroscopic method like elemental analyses, UV‐Visible, FT‐IR, EDX, TGA, molar conductivity, magnetic susceptibility measurements, mass spectroscopy, 1H and 13C NMR method. The square planar geometry was predicted by electronic spectral study. All PtII compounds were evaluated by antimicrobial assay, in vitro brine shrimp assay, in vivo cellular level bioassay using S. Pombe cells and anti‐tuberculosis study. LC50 (50% lethal concentration) values of compounds are observed between 6.450 ‐ 102.07 μg/mL. UV‐vis absorption titration, competitive displacement assay, molecular docking and viscosity measurement were carried out to examine the binding type and binding strength of complexes. The binding studies suggest partial intercalative binding mode of the complexes and the observed binding constant (Kb) values are found in the order of 6d > 6b > 6c > 6a > 6e > 6 f. The anti‐proliferative cytotoxicity of the synthesized PtII complexes (6a‐6f) were tested against the HCT‐116 (Human Colorectal Carcinoma) cancer cell line.  相似文献   

14.
The condensation of 4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one and substituted 2‐hydroxybenzaldehydes with ammonium acetate gave the title heterocycles. Synthesis of 1,5‐dihydro‐2‐methyl‐4H‐[1]naphtho‐[1′,2′:5,6]pyrano[4,3‐b]‐pyridine‐4,5‐dione is also described. A reaction mechanism is discussed.  相似文献   

15.
Acylation of 4‐(furyl‐2)‐4‐R‐aminobut‐1‐enes and 4‐R‐4‐furfurylaminobut‐1‐enes with maleic anhydride, acryloyl chloride or allylhalides provided 3‐aza‐10‐oxatricyclo[5.2.1.01,5]decenes. The tricycles are formed via an initial amide formation followed by a stereoselective exo‐IMDAF (Intramolecular Diels‐Alder of Furan). In case of competing cycloaddition (for compounds possessing two furan or two dienophilic moieties) the most substituted fivemembered cycle is preferably annulated. Refluxing of 4‐R‐4‐furfurylaminobut‐1‐enes in acetic anhydride led to exo‐3‐aza‐11‐oxatricyclo[6.2.1.01,6]undecenes with the pseudoequatorial substituent R‐4. Treatment of 3‐aza‐10‐oxatricyclo[5.2.1.01,5]decenes with PPA at 90?110°C promoted cyclic ether opening, aromatization and intramolecular cyclization reactions sequence to give the corresponding tetracyclic compounds — tetrahydroisoindolo[2,1‐a]quinolines and tetrahydroisoindolo[2,1‐b][2]benzazepines in good yields. Unusual products of ipso‐substitution in aromatic ring were obtained on cyclization of N‐p‐R‐substituted 2‐allyl‐4‐oxo‐3‐aza‐10‐oxatricyclo[5.2.1.01,5]dec‐8‐enes.  相似文献   

16.
A series of new 2‐substituted 3‐(4‐chlorophenyl)‐5,8,9‐trimethylthieno[3′,2′: 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐ones 8 were synthesized via an aza‐Wittig reaction. Phosphoranylideneamino derivatives 6a or 6b reacted with 4‐chlorophenyl isocyanate to give carbodiimide derivatives 7a or 7b , respectively, which were further treated with amines or phenols to give compounds 8 in the presence of a catalytic amount of EtONa or K2CO3. The structure of 2‐(4‐chlorophenoxy)‐3‐(4‐chlorophenyl)‐5,8,9‐trimethylthieno[3′,2′: 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐one ( 8j ) was comfirmed by X‐ray analysis.  相似文献   

17.
Photochromic 6‐bromomethyl‐6′‐methyl‐[2,2′‐bi‐1H‐indene]‐3,3′‐diethyl‐3,3′‐dihydroxy‐1,1′‐dione ( 2 ), 6,6′‐ bis(bromomethyl)‐[2,2′‐bi‐1H‐indene]‐3,3′‐diethyl‐3,3′‐dihydroxy‐1,1′‐dione ( 3 ) and 6,6′‐bis(dibromomethyl)‐[2,2′‐ bi‐1H‐indene]‐3,3′‐diethyl‐3,3′‐dihydroxy‐1,1′‐dione ( 4 ) have been synthesized from 6,6′‐dimethyl‐[2,2′‐bi‐1H‐ indene]‐3,3′‐diethyl‐3,3′‐dihydroxy‐1,1′‐dione ( 1 ). The single crystal of 4 was obtained and its crystal structure was analyzed. The results indicate that in crystal 4 , molecular arrangement is defective tightness compared with its precursor 1 . Besides, UV‐Vis absorption spectra in CH2Cl2 solution, photochromic and photomagnetic properties in solid state of 2 , 3 and 4 were also investigated. The results demonstrate that when the hydrogen atoms in the methyl group on the benzene rings of biindenylidenedione were substituted by bromines, its properties could be affected considerably.  相似文献   

18.
A regioselective synthesis of novel pyrazolo[1,5‐a]pyrimidines, pyrazolo[1,5‐a]quinazoline and pyrimido[4′,5′:3,4]pyrazolo[1,5‐a]pyrimidines incorporating a thiazole moiety was described via the reactions of the versatile, readily accessible 5‐amino‐3‐(phenylamino)‐N‐(4‐phenylthiazol‐2‐yl)‐1H‐pyrazole‐4‐carboxamide 3 with appropriate 1,3‐biselectrophilic reagents namely, β‐diketones, enaminones, and α,β‐unsaturated cyclic ketone. The newly synthesized compounds were elucidated by elemental analysis, spectral data, and alternative synthetic route whenever possible.  相似文献   

19.
25, 25′, 27, 27′‐Bis(1,3‐dioxypropane)‐bis(5, 11, 17, 23‐tetra‐tert‐butylcalix[4]arene‐26,28‐diol) (4) and 25, 25′, 27, 27′‐bis(1, 4‐dioxybutane)‐bis (5, 11, 17, 23‐tetra‐tert‐butylcalix‐[4]arene‐26, 28‐diol) (5) were synthesized by the reaction of p‐tert‐butylcalix[4]arene (1) with preorganized 25, 27‐bis(3‐bromoproxyl)calix[4]arene‐26, 27‐diol (2) and 25, 27‐bis(3‐bromobutoxyl)calix[4]arene‐26, 27‐diol (3) in the presence of K2CO3 and KI. Compounds 4 and 5 were characterized with X‐ray analysis and the selectivity of 4 and 5 toward K+ over other alkali metal ions, alkaline metal ions as well as NH4+ were investigated with an ion‐selective electrode.  相似文献   

20.
The 4,4′‐di(tert‐butyl)biphenyl(DTBB)‐catalyzed lithiation of 2,3‐dichloroprop‐1‐ene ( 10 ) in THF at 0°, in the presence of symmetrically substituted ketones, led to the corresponding methylene‐substituted diols 11 (Scheme 2), which, by treatment with NaH and I2 in THF at room temperature, furnished a series of 1,5‐dioxaspiro[2.4]heptanes 14 (Scheme 4). Oxidation of compounds 14 with RuO4 gave the corresponding lactones 16 . Compounds 14 and 16 are structural units present in many biologically active natural compounds and in versatile intermediates in synthetic organic chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号