共查询到20条相似文献,搜索用时 15 毫秒
1.
The first doubly‐bridged thiocarbamoyl metal complex [Mo(Cl)(CO)2(PPh3)]2(η1:η2:μ‐SCNMe2)2 ( 2 ) was formed from stirring [Mo(CO)2(η2‐SCNMe2)(PPh3)2Cl] ( 1 ) in dichloromethane at room temperature. Complex 2 is a dimer with each thiocarbamoyl unit coordinating through sulfur and carbon to one metal center and bridging both metals through sulfur. Complex 2 is characterized by X‐ray diffraction analysis. 相似文献
2.
Hsiao‐Fen Wang Kuang‐Hway Yih Weng‐Feng Zeng Shou.‐Ling Huang Gene‐Hsiang Lee 《中国化学会会志》2012,59(8):989-994
Reactions of the thiocarbamoyl‐molybdenum complex [Mo(CO)2(η2‐SCNMe2)(PPh3)2Cl] 1 , and ammonium diethyldithiophosphate, NH4S2P(OEt)2, and potassium tris(pyrazoyl‐1‐yl)borate, KTp, in dichloromethane at room temperature yielded the seven coordinated diethyldithiophosphate thiocarbamoyl‐molybdenum complexe [Mo(CO)2{η2‐S2P(OEt)2}(η2‐SCNMe2)(PPh3)] β‐3 , and tris(pyrazoyl‐1‐yl)borate thiocabamoyl‐molybdenum complex [Mo(CO)2(η3‐Tp)(η2‐SCNMe2)(PPh3)] 4 , respectively. The geometry around the metal atom of compounds β‐3 and 4 are capped octahedrons. The α‐ and β‐isomers are defined to the dithio‐ligand and one of the carbonyl ligands in the trans position in former and two carbonyl ligands in the trans position in later. The thiocabamoyl and diethyldithiophosphate or tris(pyrazoyl‐1‐yl)borate ligands coordinate to the molybdenum metal center through the carbon and sulfur and two sulfur atoms, or three nitrogen atoms, respectively. Complexes β‐3 and 4 are characterized by X‐ray diffraction analyses. 相似文献
3.
Treatment of Pt(PPh3)4 with N,N‐dimethylthiocarbamoyl chloride, Me2NC(=S)Cl, in dichloromethane at ?20 °C processes the oxidative addition reaction to produce platinum complex [Pt(PPh3)2(η1‐SCNMe2)(Cl)], 2 with releasing two triphenylphosphine molecules. The 31P{1H} NMR spectra of complex 2 shows the dissociation of the triphenylphosphine ligand to form diplatinum complex [Pt(PPh3)Cl]2(μ,η2‐SCNMe2)2, 3 in which the two SCNMe2 ligands coordinated through carbon to one metal center and bridging the other metal through sulfur. Complex 2 is characterized by X‐ray diffraction analysis. 相似文献
4.
Treatment of Pd(PPh3)4 with 5‐bromo‐pyrimidine [C4H3N2Br] in dichloromethane at ambient temperature cause the oxidative addition reaction to produce the palladium complex [Pd(PPh3)2(η1‐C4H3N2)(Br)], 1 , by substituting two triphenylphosphine ligands. In acetonitrile solution of 1 in refluxing temperature for 1 day, it do not undergo displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐(η1‐C4H3N2)}2, or bromide ligand to form chelating pyrimidine complex [Pd(PPh3)2(η2‐C4H3N2)]Br. Complex 1 reacted with bidentate ligand, NH4S2CNC4H8, and tridentate ligand, KTp {Tp = tris(pyrazoyl‐1‐yl)borate}, to obtain the η2‐dithiocarbamate η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐S2CNC4H8)], 4 and η2‐Tp η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐Tp)], 5 , respectively. Complexes 4 and 5 are characterized by X‐ray diffraction analyses. 相似文献
5.
Treatment of Pd(PPh3)4 with 2‐bromo‐4‐methylpyridine, C5H3N(CH3)Br, in dichloromethane at ?20 °C causes the oxidative addition reaction to produce the palladium complex [Pd(PPh3)2 {η1‐C5H3N(CH3)}(Br)], 2 , by substituting two triphenylphosphine ligands. In a dichloromethane solution of complex 2 at room temperature for 3 h, it undergoes displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐C5H3N(CH3)}2, 3 , in which the two 4‐methylpyridine ligands coordinated through carbon to one metal center and bridging the other metal through the nitrogen atom. Complexes 2 and 3 are characterized by X‐ray diffraction analyses. 相似文献
6.
《Journal of Coordination Chemistry》2012,65(1-4):57-66
Abstract Treatment of trans-[Mo(N2)2(dpe)(dpm)] (dpe = Ph2PCH2CH2PPh2, dpm = Ph2PCH2PPh2) or trans-[Mo(N2)2(dpe)(dpp)] (dpp = Ph2PCH2CH2CH2PPh2) with excess DMF in benzene at reflux under Ar resulted in the formation of trans-[Mo(CO)(DMF)(dpe)(dpm)] or trans-[Mo(CO)(DMF)(dpe)(dpp)]. X-ray structural analysis of trans-[Mo(CO)(DMF)(dpe)2] was performed using single crystals isolated as the minor product from the reaction mixture of trans-[Mo(N2)2(dpe)(dpp)] and DMF. Crystal data: C56H55O2NP4Mo, monoclinic, space group P21, a = 11.145(4), b = 23.425(5), c = 10.516(3) Å, β = 117.17(2)° V = 2442.6(13) Å3, D calcd = 1.35 g/cm3 for Z = 2. This disclosed the relatively long C O bond distance of the carbonyl ligand and the significantly short C=O bond length in the DMF ligand. When recrystallized from benzene/hexane under N2, trans-[Mo(CO)(DMF)(dpe)(dpm)] was converted into trans-[Mo(CO)(N2)(dpe)(dpm)]. 相似文献
7.
Reaction of [{Cp(CO)3Mo}2SbCl] with S8 or Se8 leads to the formation of cluster compounds [{Cp(CO)2Mo}2ESbCl] (E = S, Se). [{Cp(CO)2Mo}2SSbCl] crystallizes monoclinic, space group P21/n with a = 812.28(3), b = 855.65(4), c = 2441.01(9) pm and β = 90.149(3)°; [{Cp(CO)2Mo}2SeSbCl] · CH2Cl2 crystallizes triclinic, space group P$\bar{1}$ with a = 828.82(9), b = 1002.8(1), c = 1340.0(2) and α = 109.24(1), β = 100.87(1), γ = 96.81(1)°. For both compounds X‐ray crystal structure analysis reveals tetrahedral Mo2SbE cluster cores with Sb–E bond lengths of 256.8(1) pm (E = S) and 265.3(1) (E = Se). According to the 18 electron rule the [{Cp(CO)2Mo}2ESbCl] clusters can be regarded as complexes of the 4 electron donator ESbCl that is coordinated “side‐on” to a {Cp(CO)2Mo}2 fragment. 相似文献
8.
Fengying Zhou Suyun Zhang Yang Zhao Chongguang Zhang Xiaojuan Cheng Lina Zheng Yong Zhang Yahong Li Prof. Dr. 《无机化学与普通化学杂志》2009,635(15):2636-2641
Reaction of DyCl3 with two equivalents of NaN(SiMe3)2 in THF yielded {Dy(μ‐Cl)[N(SiMe3)2]2(THF)}2 ( 1 ). X‐ray crystal structure analysis revealed that 1 is a centrosymmetric dimer with asymmetrically bridging chloride ligands. The metal coordination arrangement can be best described as distorted trigonal bipyramid. The bond lengths of Ln–Cl and Ln–N showed a decreasing trend with the contraction of the size of Ln3+. Treatment of N,N‐bis(pyrrolyl‐α‐methyl)‐N‐methylamine (H2dpma) with 1 and known compound {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2, respectively, led to the formations of [Dy(μ‐Cl)(dpma)(THF)2]2 ( 2 ) and {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2 ( 3 ). Compounds 2 and 3 were fully characterized by single‐crystal X‐ray crystallography, elemental analysis, and 1H NMR spectroscopy. Structure determination indicated that 2 and 3 exhibit as centrosymmetric dimers with asymmetrically bridging chloride ligands. One pot reactions involving LnCl3 (Ln = Dy and Yb), LiN(SiMe3)2, and H2dpma were explored and desired products 2 and 3 were not yielded, which indicated that 1 and {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2 are the demanding precursors to synthesize Dysprosium and Ytterbium complexes supported by dpma2– ligand. Compounds 2 and 3 are the first reported lanthanide complexes chelated by dpma2– ligand. 相似文献
9.
Kuang‐Hway Yih Hsiao‐Fen Wang Keh‐Feng Huang Chang‐Chi Kwan Gene‐Hsiang Lee 《中国化学会会志》2009,56(4):718-724
Treatment of Pd(PPh3)4 with 2‐bromo‐3‐hydroxypyridine [C5H3N(OH)Br] and 3‐amino‐2‐bromopyridine [C5H3N(NH2)Br] in dichloromethane at ambient temperature cause the oxidative addition reaction to produce the palladium complex [Pd(PPh3)2{η1‐C5H3N(OH)}(Br)], 2 and [Pd(PPh3)2{η1‐C5H3N(NH2)}(Br)], 3 , by substituting two triphenylphosphine ligands, respectively. In dichloromethane solution of complexes 2 and 3 at ambient temperature for 3 days, it undergo displacement of the triphenylphosphine ligand to form the dipalladium complexes [Pd(PPh3)Br]2{μ,η2‐C5H3N(OH)}2, 4 and [Pd(PPh3)Br]2{μ,η2‐C5H3N(NH2)}2, 5 , in which the two 3‐hydroxypyridine and 3‐aminopyridine ligands coordinated through carbon to one metal center and bridging the other metal through nitrogen atom, respectively. Complexes 4 and 5 are characterized by X‐ray diffraction analyses. 相似文献
10.
Tetra(N‐methylimidazole)‐beryllium‐di‐iodide, [Be(Me‐Im)4]I2 ( 1 ), was prepared from beryllium powder and iodine in N‐methylimidazole suspension to give yellow single crystal plates, which were characterized by X‐ray diffraction and IR spectroscopy. Compound 1 crystallizes tetragonally in the space group I 2d with four formula units per unit cell. Lattice dimensions at 100(2) K: a = b = 1784.9(1), c = 696.2(1) pm, R1 = 0.0238. The structure consists of homoleptic dications [Be(Me‐Im)4]2+ with short Be–N distances of 170.3(3) pm and iodide ions with weak interionic C–H ··· I contacts. Experiments to yield crystalline products from reactions of N‐methylimidazole with BeCl2 and (Ph4P)2[Be2Cl6], respectively, in dichloromethane solutions were unsuccessful. However, single crystals of [Be3(μ‐OH)3(Me‐Im)6]Cl3 ( 2 ) were obtained from these solutions in the presence of moisture air. According to X‐ray diffraction studies, two different crystal individuals ( 2a and 2b ) result, depending on the starting materials BeCl2 and (Ph4P)2[Be2Cl6], respectively [ 2a : Space group P21/n, Z = 4; 2b : Space group P , Z = 2]. As a side‐product from the reaction of N‐methylimidazole with (Ph4P)2[Be2Cl6] single crystals of (Ph4P)Cl·CH2Cl2 ( 3 ) were identified crystallographically (P21/n, Z = 4) which are isotypical with the corresponding known bromide (Ph4P)Br·CH2Cl2. 相似文献
11.
Tetra(N,N′‐tetramethylurea)‐beryllium‐triiodide, [Be(TMU)4](I3)2 ( 1 ) was prepared from beryllium powder and iodine in N,N′‐tetramethylurea to give orange crystals, which were characterized by X‐ray diffraction and IR spectroscopy. Compound 1 crystallizes monoclinically in the space group C2/c with four formula units per unit cell. Lattice dimensions at 100(2) K: a = 1906.6(1), b = 1185.7(1), c = 1895.0(1) pm, β = 113.60(1) °, R1 = 0.0291. The structure of 1 consists of distorted tetrahedral cations [Be(TMU)4]2+ with Be–O bond lengths of 162.5(5) and 160.8(5) pm and triiodide ions without site symmetry. 相似文献
12.
Maria G. Babashkina Damir A. Safin Dr. Łukasz Szyrwiel Maria Kubiak Felix D. Sokolov Yuri V. Starikov Henryk Kozlowski 《无机化学与普通化学杂志》2009,635(3):554-557
Reaction of the potassium salt of N‐thiophosphorylated thiourea α‐naphthylNHC(S)NHP(S)(OiPr)2 ( HL ) with Cu(PPh3)3I in aqueous EtOH/CH2Cl2 leads to the mononuclear complex [Cu(PPh3)2L–S,S′]. By using copper(I) iodide instead ofCu(PPh3)3I, the polynuclear complex [Cun(L–S,S′)n] was obtained. The structures of these compounds were investigated by elemental analysis, 1H and 31P{1H} NMR and IR spectroscopy. The crystal structures of HL and Cu(PPh3)2L were determined by single‐crystal X‐ray diffraction. 相似文献
13.
Three new triruthenium clusters, Ru3(CO)9(μ‐arphos)AsPh3 ( 1 ), Ru3(CO)9(μ‐arphos)As(m‐C6H4Me)3 ( 2 ), and Ru3(CO)9(μ‐arphos)As(p‐C6H4Me)3 ( 3 ) were synthesized via thermal reactions of Ru3(CO)10(μ‐arphos) with different tertiary arsine ligands [AsPh3, As(m‐C6H4Me)3, As(p‐C6H4Me)3]. All these complexes were fully characterized by elemental analysis, FT‐IR, NMR spectroscopy, and single‐crystal X‐ray diffraction. 相似文献
14.
Siti Syaida Sirat Imthyaz Ahmed Khan Omar Bin Shawkataly Mohd Mustaqim Rosli 《无机化学与普通化学杂志》2014,640(10):2019-2024
The reaction of Ru3(CO)10(dotpm) ( 1 ) [dotpm = (bis(di‐ortho‐tolylphosphanyl)methane)] and one equivalent of L [L = PPh3, P(C6H4Cl‐p)3 and PPh2(C6H4Br‐p)] in refluxing n‐hexane afforded a series of derivatives [Ru3(CO)9(dotpm)L] ( 2 – 4 ), respectively, in ca. 67–70 % yield. Complexes 2 – 4 were characterized by elemental analysis (CHN), IR, 1H NMR, 13C{1H} NMR and 31P{1H} NMR spectroscopy. The molecular structures of 2 , 3 , and 4 were established by single‐crystal X‐ray diffraction. The bidentate dotpm and monodentate phosphine ligands occupy equatorial positions with respect to the Ru triangle. The effect of substitution resulted in significant differences in the Ru–Ru and Ru–P bond lengths. 相似文献
15.
The η2‐thio‐indium complexes [In(η2‐thio)3] (thio = S2CNC5H10, 2 ; SNC4H4, (pyridine‐2‐thionate, pyS, 3 ) and [In(η2‐pyS)2(η2‐acac)], 4 , (acac: acetylacetonate) are prepared by reacting the tris(η2‐acac)indium complex [In(η2‐acac)3], 1 with HS2CNC5H10, pySH, and pySH with ratios of 1:3, 1:3, and 1:2 in dichloromethane at room temperature, respectively. All of these complexes are identified by spectroscopic methods and complexes 2 and 3 are determined by single‐crystal X‐ray diffraction. Crystal data for 2 : space group, C2/c with a = 13.5489(8) Å, b = 12.1821(7) Å, c = 16.0893(10) Å, β = 101.654(1)°, V = 2600.9(3) Å3, and Z = 4. The structure was refined to R = 0.033 and Rw = 0.086; Crystal data for 3 : space group, P21 with a = 8.8064 (6) Å, b = 11.7047 (8) Å, c = 9.4046 (7) Å, β = 114.78 (1)°, V = 880.13(11) Å3, and Z = 2. The structure was refined to R = 0.030 and Rw = 0.061. The geometry around the metal atom of the two complexes is a trigonal prismatic coordination. The piperidinyldithiocarbamate and pyridine‐2‐thionate ligands, respectively, coordinate to the indium metal center through the two sulfur atoms and one sulfur and one nitrogen atoms, respectively. The short C‐N bond length in the range of 1.322(4)–1.381(6) Å in 2 and C‐S bond length in the range of 1.715(2)–1.753(6) Å in 2 and 3 , respectively, indicate considerable partial double bond character. 相似文献
16.
Influence of Halogen Substitution in the Ligand Sphere on the Antitumor and Antibacterial Activity of Half‐sandwich Ruthenium(II) Complexes [RuX(η6‐arene)(C5H4N‐2‐CH=N‐Ar)]+ 下载免费PDF全文
Joel M. Gichumbi Bernard Omondi Geraldine Lazarus Moganavelli Singh Nazia Shaikh Hafizah Y. Chenia Holger B. Friedrich 《无机化学与普通化学杂志》2017,643(11):699-711
New complexes [(η6‐p‐cymene)Ru(C5H4N‐2‐CH=N–Ar)X]PF6 [X = Br ( 1 ), I ( 2 ); Ar = 4‐fluorophenyl ( a ), 4‐chlorophenyl ( b ), 4‐bromophenyl ( c ), 4‐iodophenyl ( d ), 2,5‐dichlorophenyl ( e )] were prepared, as well as 3a – 3e (X = Cl) and the new complexes [(η6‐arene)RuCl(N‐N)]PF6 (arene = C6H5OCH2CH2OH, N‐N = 2,2′‐bipyridine ( 4 ), 2,6‐(dimethylphenyl)‐pyridin‐2‐yl‐methylene amine ( 5 ), 2,6‐(diisopropylphenyl)‐pyridin‐2‐yl‐methylene amine ( 6 ); arene = p‐cymene, N‐N = 4‐(aminophenyl)‐pyridin‐2‐yl‐methylene amine ( 7 )]. X‐ray diffraction studies were performed for 1a , 1b , 1c , 1d , 2b , 5 , and 7 . Cytotoxicities of 1a – 1d and 2 were established versus human cancer cells epithelial colorectal adenocarcinoma (Caco‐2) (IC50: 35.8–631.0 μM), breast adenocarcinoma (MCF7) (IC50: 36.3–128.8.0 μM), and hepatocellular carcinoma (HepG2) (IC50: 60.6–439.8 μM), 3a – 3e were tested against HepG2 and Caco‐2, and 4 – 7 were tested against Caco‐2. 1 – 7 were tested against non‐cancerous human epithelial kidney cells. 1 and 2 were more selective towards tumor cells than the anticancer drug 5‐fluorouracil (5‐FU), but 3a – 3e (X = Cl) were not selective. 1 and 2 had good activity against MCF7, some with lower IC50 than 5‐FU. Complexes with X = Br or I had moderate activity against Caco‐2 and HepG2, but those with Cl were inactive. Antibacterial activities of 1a , 2b , 3a , and 7 were tested against antibacterial susceptible and resistant Gram‐negative and ‐positive bacteria. 1a , 2b , and 3a showed activity against methicillin‐resistant S. aureus (MIC = 31–2000 μg · mL–1). 相似文献
17.
Syntheses and Crystal Structures of Copper and Silver Complexes with the Ylide Ph3PCHP(O)PPh2 as Ligand 下载免费PDF全文
The reactivity of the hydrolysis product of hexaphenylcarbodiphosphorane, PPh3CHP(O)Ph2, towards different soft Lewis acids, such as CuI and Ag[BF4] are reported. While CuI exclusively binds at the ylidic carbon atom, reaction of the silver cation in CH2Cl2 leads to proton abstraction from the solvent to give the cation [PPh3CH2P(O)Ph2]+. Surprisingly, Ag+ replaces the methyl group of [PPh3CHMeP(O)Ph2]+ to produce a dimeric complex, in which Ag+ is coordinated to C and O forming an eight membered ring. The compounds were characterized by spectroscopic methods and X‐ray diffraction. 相似文献
18.
Chien Thang Pham Thu Ha Nguyen Thi Nguyet Trieu Kenji Matsumoto Hung Huy Nguyen 《无机化学与普通化学杂志》2019,645(17):1072-1078
The bifunctional ligand 2,6‐dipicolinoylbis(N,N‐diethylthiourea) (H2L) readily reacts with mixtures of Zn(CH3COO)2 and LnCl3 in MeOH at ambient temperature with formation of trinuclear heterobimetallic complexes [Zn2Ln(L)2(OAc)3] ( 1a – 1f ) (Ln = Ce, Nd, Sm, Gd, Dy, Er). The X‐ray single‐crystal diffraction and structural studies of the complexes revealed their isostructural nature, in which two doubly‐charged ligands {L2–} bind two Zn2+ ions with the terminal acylthiourea sites and one Ln3+ ion with the central 2,6‐pyridinedicarboxamide site. In the complexes, the coordination numbers of LnIII and ZnII ions are 9 and 5, respectively. Magnetic properties of the complexes were studied by temperature‐dependent dc magnetic measurements. The observed μeff values at room temperature are all closed to the calculated values. Fitting χM and M data of [Zn2Gd(L)2(OAc)3] ( 1d ) shows a giso value of 1.94. 相似文献
19.
Four Lewis‐base stabilized N‐silver(I) succinimide complexes of type [Ln·Rm·AgNC4H4O2] (L = N,N,N′,N′‐tetramethylethylenediamine (TMEDA), n = 1, m = 0, 2a ; L = P(OEt)3, n = 2, m = 0, 2b ; L = PPh3, m = 0, n = 2, 2c ; L = P(OMe)3, R = TMEDA, n = 1, m = 1, 2d ) were prepared by a “one‐pot” synthesis methodology and characterized. The molecular structures of 2a and 2c have been determined by using X‐ray single crystal analysis. Complex 2a exists as ion pair {[Ag(TMEDA)2]+[Ag(NC4H4O2)2]–} in the solid state and complex 2c is a monomer with the three‐coordinate silver atom. Complex 2b was used as precursor in the deposition of silver for the first time by using MOCVD technique. The silver films obtained were characterized using scanning electron microscopy (SEM) and energy‐dispersion X‐ray analysis (EDX). SEM and EDX studies show that the dense and homogeneous silver films could be obtained. 相似文献
20.
Reaction of Ndcl3 with AlCl3 and mesitylene in benzene gives complex [Nd(η6‐1, 3, 5‐C6H3Me3)‐(AlCl4)3](C6H6) (1) which was characterized by elemental analysis, IR spectra, MS and X‐ray diffractions. The X‐ray determination indicates that 1 has a distorted pentagonal bipyramidal geometry and crystallizes in the monoclinic, space group P21/n with a = 0.9586(2), b = 1.1717(5), c = 2.8966(7) nm, β = 90.85 (2)°, V = 3.2529 (6) nm3,Dc= 1.573 g/cm3, Z = 4. A comparison of bond parameters for all the reported Ln (η6‐Ar) (AlCl4)3 complexes indicates that the bond distance of La? C is shortened with the increasing of methyl group on benzene and with the decreasing of radius of lanthanide ions. 相似文献