首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The unstructured quadrilateral mesh‐based solution adaptive method is proposed in this article for simulation of compressible multi‐fluid flows with a general form of equation of state (EOS). The five equation model (J. Comput. Phys. 2002; 118 :577–616) is employed to describe the compressible multi‐fluid flows. To preserve the oscillation‐free property of velocity and pressure across the interface, the non‐conservative transport equation is discretized in a compatible way of the HLLC scheme for the conservative Euler equations on the unstructured quadrilateral cell‐based adaptive mesh. Five numerical examples, including an interface translation problem, a shock tube problem with two fluids, a solid impact problem, a two‐dimensional Riemann problem and a bubble explosion under free surface, are used to examine its performance in solving the various compressible multi‐fluid flow problems with either the same types of EOS or different types of EOS. The results are compared with those calculated by the following methods: the method with ROE scheme (J. Comput. Phys. 2002; 118 :577–616), the seven equation model (J. Comput. Phys. 1999; 150 :425–467), Shyue's fluid‐mixture model (J. Comput. Phys. 2001; 171 :678–707) or the method in Liu et al. (Comp. Fluids 2001; 30 :315–337). The comparisons for the test problems show that the proposed method seems to be more accurate than the method in Allaire et al. (J. Comput. Phys. 2002; 118 :577–616) or the seven‐equation model (J. Comput. Phys. 1999; 150 :425–467). They also show that it can adaptively and accurately solve these compressible multi‐fluid problems and preserve the oscillation‐free property of pressure and velocity across the material interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The representation of geometries as buildings, flood barriers or dikes in free surface flow models implies tedious and time‐consuming operations in order to define accurately the shape of these objects when using a body fitted numerical mesh. The immersed boundary method is an alternative way to define solid bodies inside the computational domain without the need of fitting the mesh boundaries to the shape of the object. In the direct forcing immersed boundary method, a solid body is represented by a grid of Lagrangian markers, which define its shape and which are independent from the fluid Eulerian mesh. This paper presents a new implementation of the immersed boundary method in an unstructured finite volume solver for the 2D shallow water equations. Moving least‐squares is used to transmit information between the grid of Lagrangian markers and the fluid Eulerian mesh. The performance of the proposed implementation is analysed in three test cases involving different flow conditions: the flow around a spur dike, a dam break flow with an isolated obstacle and the flow around an array of obstacles. A very good agreement between the classic body fitted approach and the immersed boundary method was found. The differences between the results obtained with both methods are less relevant than the errors because of the intrinsic shallow water assumptions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
4.
The numerical simulation of physical phenomena represented by non‐linear hyperbolic systems of conservation laws presents specific difficulties mainly due to the presence of discontinuities in the solution. State of the art methods for the solution of such equations involve high resolution shock capturing schemes, which are able to produce sharp profiles at the discontinuities and high accuracy in smooth regions, together with some kind of grid adaption, which reduces the computational cost by using finer grids near the discontinuities and coarser grids in smooth regions. The combination of both techniques presents intrinsic numerical and programming difficulties. In this work we present a method obtained by the combination of a high‐order shock capturing scheme, built from Shu–Osher's conservative formulation (J. Comput. Phys. 1988; 77 :439–471; 1989; 83 :32–78), a fifth‐order weighted essentially non‐oscillatory (WENO) interpolatory technique (J. Comput. Phys. 1996; 126 :202–228) and Donat–Marquina's flux‐splitting method (J. Comput. Phys. 1996; 125 :42–58), with the adaptive mesh refinement (AMR) technique of Berger and collaborators (Adaptive mesh refinement for hyperbolic partial differential equations. Ph.D. Thesis, Computer Science Department, Stanford University, 1982; J. Comput. Phys. 1989; 82 :64–84; 1984; 53 :484–512). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
We present an efficient algorithm for simulation of deformable bodies interacting with two-dimensional incompressible fluid flows. The temporal and spatial discretizations of the Navier–Stokes equations in vorticity stream-function formulation are based on classical fourth-order Runge–Kutta scheme and compact finite differences, respectively. Using a uniform Cartesian grid we benefit from the advantage of a new fourth-order direct solver for the Poisson equation to ensure the incompressibility constraint down to machine zero over an optimal grid. For introducing a deformable body in fluid flow, the volume penalization method is used. A Lagrangian structured grid with prescribed motion covers the deformable body which is interacting with the surrounding fluid due to the hydrodynamic forces and the torque calculated on the Eulerian reference grid. An efficient law for controlling the curvature of an anguilliform fish, swimming toward a prescribed goal, is proposed which is based on the geometrically exact theory of nonlinear beams and quaternions. Validation of the developed method shows the efficiency and expected accuracy of the algorithm for fish-like swimming and also for a variety of fluid/solid interaction problems.  相似文献   

6.
A numerical method is developed for solving the 3D, unsteady, incompressible Navier–Stokes equations in curvilinear coordinates containing immersed boundaries (IBs) of arbitrary geometrical complexity moving and deforming under forces acting on the body. Since simulations of flow in complex geometries with deformable surfaces require special treatment, the present approach combines a hybrid immersed boundary method (HIBM) for handling complex moving boundaries and a material point method (MPM) for resolving structural stresses and movement. This combined HIBM & MPM approach is presented as an effective approach for solving fluid–structure interaction (FSI) problems. In the HIBM, a curvilinear grid is defined and the variable values at grid points adjacent to a boundary are forced or interpolated to satisfy the boundary conditions. The MPM is used for solving the equations of solid structure and communicates with the fluid through appropriate interface‐boundary conditions. The governing flow equations are discretized on a non‐staggered grid layout using second‐order accurate finite‐difference formulas. The discrete equations are integrated in time via a second‐order accurate dual time stepping, artificial compressibility scheme. Unstructured, triangular meshes are employed to discretize the complex surface of the IBs. The nodes of the surface mesh constitute a set of Lagrangian control points used for tracking the motion of the flexible body. The equations of the solid body are integrated in time via the MPM. At every instant in time, the influence of the body on the flow is accounted for by applying boundary conditions at stationary curvilinear grid nodes located in the exterior but in the immediate vicinity of the body by reconstructing the solution along the local normal to the body surface. The influence of the fluid on the body is defined through pressure and shear stresses acting on the surface of the body. The HIBM & MPM approach is validated for FSI problems by solving for a falling rigid and flexible sphere in a fluid‐filled channel. The behavior of a capsule in a shear flow was also examined. Agreement with the published results is excellent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, the immersed element‐free Galerkin method (IEFGM) is proposed for the solution of fluid–structure interaction (FSI) problems. In this technique, the FSI is represented as a volumetric force in the momentum equations. In IEFGM, a Lagrangian solid domain moves on top of an Eulerian fluid domain that spans over the entire computational region. The fluid domain is modeled using the finite element method and the solid domain is modeled using the element‐free Galerkin method. The continuity between the solid and fluid domains is satisfied by means of a local approximation, in the vicinity of the solid domain, of the velocity field and the FSI force. Such an approximation is achieved using the moving least‐squares technique. The method was applied to simulate the motion of a deformable disk moving in a viscous fluid due to the action of the gravitational force and the thermal convection of the fluid. An analysis of the main factors affecting the shape and trajectory of the solid body is presented. The method shows a distinct advantage for simulating FSI problems with highly deformable solids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
We consider the two-dimensional motion of several non-homogeneous rigid bodies immersed in an incompressible non-homogeneous viscous fluid. The fluid, and the rigid bodies are contained in a fixed open bounded set of ?2. The motion of the fluid is governed by the Navier-Stokes equations for incompressible fluids and the standard conservation laws of linear and angular momentum rule the dynamics of the rigid bodies. The time variation of the fluid domain (due to the motion of the rigid bodies) is not known a priori, so we deal with a free boundary value problem. The main novelty here is thedemonstration of the global existence of weak solutions for this problem. More precisely, the global character of the solutions we obtain is due to the fact that we do not need any assumption concerning the lack of collisions between several rigid bodies or between a rigid body and the boundary. We give estimates of the velocity of the bodies when their mutual distance or the distance to the boundary tends to zero.  相似文献   

9.
10.
This paper presents a computational model for free surface flows interacting with moving rigid bodies. The model is based on the SPH method, which is a popular meshfree, Lagrangian particle method and can naturally treat large flow deformation and moving features without any interface/surface capture or tracking algorithm. Fluid particles are used to model the free surface flows which are governed by Navier–Stokes equations, and solid particles are used to model the dynamic movement (translation and rotation) of moving rigid objects. The interaction of the neighboring fluid and solid particles renders the fluid–solid interaction and the non‐slip solid boundary conditions. The SPH method is improved with corrections on the SPH kernel and kernel gradients, enhancement of solid boundary condition, and implementation of Reynolds‐averaged Navier–Stokes turbulence model. Three numerical examples including the water exit of a cylinder, the sinking of a submerged cylinder and the complicated motion of an elliptical cylinder near free surface are provided. The obtained numerical results show good agreement with results from other sources and clearly demonstrate the effectiveness of the presented meshfree particle model in modeling free surface flows with moving objects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this work a mixed Eulerian–Lagrangian technique is devised, hereinafter abbreviated as ELAFINT (Eulerian–Lagrangian Algorithm For INterface Tracking). The method is capable of handling fluid flows in the presence of both irregularly shaped solid boundaries and moving/free phase boundaries. The position and shape of the boundary are tracked explicitly by the Lagrangian translation of marker particles. The field equations are solved on an underlying fixed grid as in Eulerian methods. The interface passes through the grid lay-out and details regarding the treatment of the cut cells so formed are provided. The issues involved in treating the internal boundaries are dealt with, with particular attention to conservation and consistency in the vicinity of the interface. The method is tested by comparing with solutions from well-tested body-fitted co-ordinate methods. Test cases pertaining to forced and natural convection in irregular geometries and moving phase boundaries with melt convection are presented. The capability developed here can be beneficial in solving difficult flow problems involving moving and geometrically complex boundaries.  相似文献   

12.
The finite volume discretization of nonlinear elasticity equations seems to be a promising alternative to the traditional finite element discretization as mentioned by Lee et al. [Computers and Structures (2013)]. In this work, we propose to solve the elastic response of a solid material by using a cell‐centered finite volume Lagrangian scheme in the current configuration. The hyperelastic approach is chosen for representing elastic isotropic materials. In this way, the constitutive law is based on the principle of frame indifference and thermodynamic consistency, which are imposed by mean of the Coleman–Noll procedure. It results in defining the Cauchy stress tensor as the derivative of the free energy with respect to the left Cauchy–Green tensor. Moreover, the materials being isotropic, the free‐energy is function of the left Cauchy–Green tensor invariants, which enable the use of the neo‐Hookean model. The hyperelasticity system is discretized using the cell‐centered Lagrangian scheme from the work of Maire et al. [J. Comput. Phys. (2009)]. The 3D scheme is first order in space and time and is assessed against three test cases with both infinitesimal displacements and large deformations to show the good accordance between the numerical solutions and the analytic ones. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A Finite Element Method in mixed Eulerian and Lagrangian formulation is developed to allow direct numerical simulations of dynamical interaction between an incompressible fluid and a hyper-elastic incompressible solid. A Fictitious Domain Method is applied so that the fluid is extended inside the deformable solid volume and the velocity field in the entire computational domain is resolved in an Eulerian framework. Solid motion, which is tracked in a Lagrangian framework, is imposed through the body force acting on the fluid within the solid boundaries. Solid stress smoothing on the Lagrangian mesh is performed with the Zienkiewicz–Zhu patch recovery method. High-order Gaussian integration quadratures over cut elements are used in order to avoid sub-meshing within elements in the Eulerian mesh that are intersected by the Lagrangian grid. The algorithm is implemented and verified in two spatial dimensions by comparing with the well validated simulations of solid deformation in a lid driven cavity and periodic elastic wall deformation driven by a time-dependent flow. It shows good agreement with the numerical results reported in the literature. In 3-D the method is validated against previously reported numerical simulations of 3-D rhythmically contracting alveolated ducts.  相似文献   

14.
We present a new finite-difference formulation to update the conformation tensor in dumbbell models (e.g., Oldroyd-B, FENE-P, Giesekus) that guarantees positive eigenvalues of the tensor (i.e., the tensor remains positive definite) and prevents over-extension for finite-extensible models. The formulation is a generalization of the second-order, central difference scheme developed by Kurganov and Tadmor [A. Kurganov, E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations, J. Comput. Phys. 160 (2000) 241–282] that guarantees a scalar field remains everywhere positive. We have extended the algorithm to guarantee a tensor field remains everywhere positive definite following an update. Extensive testing of the algorithm shows that the volume average of the conformation tensor is conserved. Furthermore, volume averages of the conformation tensor in homogeneous turbulent shear flow made over the Eulerian grid are in quantitative agreement with Lagrangian averages made over fluid particles moving throughout the domain, highlighting the accuracy of the treatment of the convective terms.  相似文献   

15.
16.
A six degrees of freedom (6DOF) algorithm is implemented in the open‐source CFD code REEF3D. The model solves the incompressible Navier–Stokes equations. Complex free surface dynamics are modeled with the level set method based on a two‐phase flow approach. The convection terms of the velocities and the level set method are treated with a high‐order weighted essentially non‐oscillatory discretization scheme. Together with the level set method for the free surface capturing, this algorithm can model the movement of rigid floating bodies and their interaction with the fluid. The 6DOF algorithm is implemented on a fixed grid. The solid‐fluid interface is represented with a combination of the level set method and ghost cell immersed boundary method. As a result, re‐meshing or overset grids are not necessary. The capability, accuracy, and numerical stability of the new algorithm is shown through benchmark applications for the fluid‐body interaction problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is devoted to the numerical approximation of a hyperbolic non‐equilibrium multiphase flow model with different velocities on moving meshes. Such goal poses several difficulties. The presence of different flow velocities in conjunction with cell velocities poses difficulties for upwinding fluxes. Another issue is related to the presence of non‐conservative terms. To solve these difficulties, the discrete equations method (J. Comput. Phys. 2003; 186 (2):361–396; J. Fluid. Mech. 2003; 495 :283–321; J. Comput. Phys. 2004; 196 :490–538; J. Comput. Phys. 2005; 205 :567–610) is employed and generalized to the context of moving cells. The complementary conservation laws, available for the mixture, are used to determine the velocities of the cells boundaries. With these extensions, an accurate and robust multiphase flow method on moving meshes is obtained and validated over several test problems with exact or experimental solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
A further development of the QALE‐FEM (quasi‐arbitrary Lagrangian–Eulerian finite element method) based on a fully nonlinear potential theory is presented in this paper. This development enables the QALE‐FEM to deal with three‐dimensional (3D) overturning waves over complex seabeds, which have not been considered since the method was devised by the authors of this paper in their previous works (J. Comput. Phys. 2006; 212 :52–72; J. Numer. Meth. Engng 2009; 78 :713–756). In order to tackle challenges associated with 3D overturning waves, two new numerical techniques are suggested. They are the techniques for moving the mesh and for calculating the fluid velocity near overturning jets, respectively. The developed method is validated by comparing its numerical results with experimental data and results from other numerical methods available in the literature. Good agreement is achieved. The computational efficiency of this method is also investigated for this kind of wave, which shows that the QALE‐FEM can be many times faster than other methods based on the same theory. Furthermore, 3D overturning waves propagating over a non‐symmetrical seabed or multiple reefs are simulated using the method. Some of these results have not been found elsewhere to the best of our knowledge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In this review, we introduce immersed boundary (IB) methods for fluid-structure interactions (FSIs) of rigid and elastic bodies. IB methods impose momentum forcing on an Eulerian mesh to satisfy boundary conditions on the interface between fluid and structure, which enables us to use a non-body conforming grid system for complex-shaped moving bodies. Imposition of the momentum forcing is performed directly through discrete delta function or indirectly through velocity reconstruction, by which IB methods have their own strengths and weaknesses to FSI problems of rigid and elastic bodies. To deal with FSI, IB methods using monolithic and partitioned (strong and weak coupling) approaches with different stability and cost have been suggested. Nevertheless, two important problems in FSI, cases of low density ratio of solid to fluid and high Reynolds number, have not been completely overcome by current IB methods in terms of the stability, accuracy and cost. These aspects are examined in this review.  相似文献   

20.
The coupling between the equations governing the free‐surface flows, the six degrees of freedom non‐linear rigid body dynamics, the linear elasticity equations for mesh‐moving and the cables has resulted in a fluid‐structure interaction technology capable of simulating mooring forces on floating objects. The finite element solution strategy is based on a combination approach derived from fixed‐mesh and moving‐mesh techniques. Here, the free‐surface flow simulations are based on the Navier–Stokes equations written for two incompressible fluids where the impact of one fluid on the other one is extremely small. An interface function with two distinct values is used to locate the position of the free‐surface. The stabilized finite element formulations are written and integrated in an arbitrary Lagrangian–Eulerian domain. This allows us to handle the motion of the time dependent geometries. Forces and momentums exerted on the floating object by both water and hawsers are calculated and used to update the position of the floating object in time. In the mesh moving scheme, we assume that the computational domain is made of elastic materials. The linear elasticity equations are solved to obtain the displacements for each computational node. The non‐linear rigid body dynamics equations are coupled with the governing equations of fluid flow and are solved simultaneously to update the position of the floating object. The numerical examples includes a 3D simulation of water waves impacting on a moored floating box and a model boat and simulation of floating object under water constrained with a cable. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号