首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N‐[2‐([1,2,4]Oxadiazol‐5‐yl)cyclohepten‐1‐yl]formamide oximes were synthesized by fusion of (6,7,8,9‐tetrahydro‐5H‐cyclohepta[1,2‐d]pyrimidin‐4‐yl)amidines with hydroxylamine hydrochloride through a subsequent rearrangement reaction. Effects of the products as well as the structurally related N‐[4‐([1,2,4]oxadiazol‐5‐yl)‐2,3‐dihydro[1]benzoxepin‐5‐yl]formamide oximes and N‐[4‐([1,2,4]oxadiazol‐5‐yl)‐2,3‐dihydro[1]benzothiepin‐5‐yl]formamide oximes on platelet aggregation were evaluated.  相似文献   

2.
A new series of isoxazole substituted fused triazolo‐thiadiazoles have been synthesized by the cyclocondensation of 5‐methylisoxazole‐3‐craboxylic acid and 4‐amino 1,2‐4‐triazole‐ 3,5‐dithiol using phosphorous oxychloride. The cyclised intermediate 6‐(5‐methylisoxazol‐3‐yl)‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazole‐3‐thiol later on S‐alkylated with different alkyl halides in ethanol to give the title products in good to excellent yields.  相似文献   

3.
The reactions of N‐([1]benzofuro[3,2‐d]pyrimidin‐4‐yl)formamidines with hydroxylamine hydrochloride gave rearranged cyclization products via ring cleavage of the pyrimidine component accompanied by a ring closure of the 1,2,4‐oxadiazole to give N‐[2‐([1,2,4]oxadiazol‐5‐yl)[1]benzofuran‐3‐yl)formamide oximes. N‐([1]Benzothieno[3,2‐d]pyrimidin‐4‐yl)formamidines and N‐(pyrido[2,3‐d]pyrimidin‐4‐yl)formamidines with hydroxylamine hydrochloride gave similar results.  相似文献   

4.
This study of 3‐(5‐phenyl‐1,3,4‐oxadiazol‐2‐yl)‐2H‐chromen‐2‐one, C17H10N2O3, 1 , and 3‐[5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl]‐2H‐chromen‐2‐one, C16H9N3O3, 2 , was performed on the assumption of the potential anticancer activity of the compounds. Three polymorphic structures for 1 and two polymorphic structures for 2 have been studied thoroughly. The strongest intermolecular interaction is stacking of the `head‐to‐head' type in all the studied crystals. The polymorphic structures of 1 differ with respect to the intermolecular interactions between stacked columns. Two of the polymorphs have a columnar or double columnar type of crystal organization, while the third polymorphic structure can be classified as columnar‐layered. The difference between the two structures of 2 is less pronounced. Both crystals can be considered as having very similar arrangements of neighbouring columns. The formation of polymorphic modifications is caused by a subtle balance of very weak intermolecular interactions and packing differences can be identified only using an analysis based on a study of the pairwise interaction energies.  相似文献   

5.
6.
A series of 4‐[2‐(alicyclic‐[1,2,4]oxadiazol‐3‐yl)phenoxy]‐butyric acids were synthesized from N‐hydroxy‐2‐isopropoxy benzamidine in 4 steps with good yields. These [1,2,4]oxadiazoles are novel platelet aggregation inhibitors preventing human platelet aggregation induced by thromboxane derivative U44,619 and adenosine diphosphate. A structure‐activity‐relationship study revealed that the potency for these 5‐oxadiazoles increases with the increase in the ring size of the alicylic rings. Derivative 8f may be useful as a template for the design of more potent anti‐platelet agents.  相似文献   

7.
Reactions of N‐(quinazolin‐4‐yl)amidines and their amide oximes with hydroxylamine hydrochloride gave cyclization products that were formed by an initial ring cleavage of the pyrimidine component followed by a ring closure formation of 1,2,4‐oxadiazole to give N‐[2‐([1,2,4]oxadiazol‐5‐yl)phenyl]formamide oximes. All isolated products were evaluated for in vitro inhibitory activity on the formation of pentosidine, which is one of representative advanced glycation end products. Some products exhibited significant inhibitory activity against pentosidine formation. J. Heterocyclic Chem., (2011).  相似文献   

8.
Synthesis of 2‐(o‐nitrophenyl)‐6‐arylthiazolo[3,2‐b]‐[1,2,4]‐triazoles 4 and its isomer 3‐(o‐nitrophenyl)‐5‐arylthiazolo[2,3‐c]‐[1,2,4]‐triazoles 6 has been achieved starting from the appropriate 1‐(o‐nitrobenzoyl)‐3‐thiosemicarbazide 1 . Compound 1 on condensation with α‐haloketones gives 2‐(o‐nitrobenzoyl)hydrazino‐4‐arylthiazole hydrobromide 5 , which, on cyclization with POCl3, affords thiazolo[3,2‐b]‐[1,2,4]‐triazoles 6 and not the isomeric thiazolo[3,2‐b]‐[1,2,4]‐triazoles 4 . This has been established by an unequivocal synthesis of 4 through polyphosphoric acid cyclization of 5‐aroylmethylmercapto‐3‐o‐nitrophenyl‐[1,2,4]‐triazole 3 . Compound 3 was synthesized by condensation of α‐haloketones with 5‐mercapto‐3‐(o‐nitrophenyl)‐[1,2,4]‐triazole 2 , obtained cyclization of 2‐(o‐nitrobenzoyl)hydrazinecarbothioamide 1 with NaOH. The antibacterial and antifungal activities of some of the compounds have also been evaluated.  相似文献   

9.
The dipharmacophore compound 3‐cyclopropyl‐5‐(3‐methyl‐[1,2,4]triazolo[4,3‐a]pyridin‐7‐yl)‐1,2,4‐oxadiazole, C12H11N5O, was studied on the assumption of its potential biological activity. Two polymorphic forms differ in both their molecular and crystal structures. The monoclinic polymorphic form was crystallized from more volatile solvents and contains a conformer with a higher relative energy. The basic molecule forms an abundance of interactions with relatively close energies. The orthorhombic polymorph was crystallized very slowly from isoamyl alcohol and contains a conformer with a much lower energy. The basic molecule forms two strong interactions and a large number of weak interactions. Stacking interactions of the `head‐to‐head' type in the monoclinic structure and of the `head‐to‐tail' type in the orthorhombic structure proved to be the strongest and form stacked columns in the two polymorphs. The main structural motif of the monoclinic structure is a double column where two stacked columns interact through weak C—H…N hydrogen bonds and dispersive interactions. In the orthorhombic structure, a single stacked column is the main structural motif. Periodic calculations confirmed that the orthorhombic structure obtained by slow evaporation has a lower lattice energy (0.97 kcal mol?1) compared to the monoclinic structure.  相似文献   

10.
A series of new chiral (S)‐3‐ary1‐6‐pyrrolidin‐2‐yl‐[1,2,4]triazolo[3,4‐b]thiadiazole (II1‐5), (S)‐1‐(3‐aryl‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazol‐6‐yl)‐ethylamine (II6‐8) and (S)‐1,2‐bis(3‐aryl‐[1,2,4]triazolo‐[3,4‐b][1,3,4]thiadiazol‐6‐yl)‐ethylamine (II9‐11) were prepared by the condensation of 3‐aryl‐4‐amino‐5‐mercapto‐1,2,4‐triazoles with different L‐amino acids in the presence of phosphorus oxychloride and evaluated for their antibacterial activity.  相似文献   

11.
5‐Aryl‐3,4‐diamino‐1,2,4‐triazoles 5 on treatment with β‐chlorocinnamaldehydes 7 in the presence of catalytic amount of p‐TsOH and N,N‐dimethylformamide as an energy transfer medium under microwave irradiation and as solvent with oil‐bath heating at 80 °C affords novel 3,6‐diaryl‐5H‐[1,2,4]triazolo[4,3‐b]‐1,2,4]triazepines 8 . The structures of the synthesized compounds were established on the basis of 1H NMR, IR, mass spectral data and elemental analysis.  相似文献   

12.
Reaction of 3‐(3‐cyanopropoxy)[1]benzofuran‐2‐carbonitriles with potassium tert‐butoxide gave 5‐amino‐1,2‐dihydro[1]benzofuro[3,2‐d]furo[2,3‐b]pyridines and 5‐amino‐2,3‐dihydro[1]benzofuro[3,2‐b]oxepin‐4‐carbonitriles as new ring systems. Reactions of the 5‐chloro derivative, obtained from 5‐amino‐1,2‐dihydro[1]benzofuro[3,2‐d]furo[2,3‐b]pyridine, produced a dihydrofuran ring‐opened compound and 5‐substituted compounds. J. Heterocyclic Chem.,(2011).  相似文献   

13.
A series of new N‐Substituted‐N′‐(4,6‐dimethylpyrimidin‐2‐yl)‐thiourea derivatives ( 3a , 3b , 3c , 3d ) and related fused heterocyclic compounds ( 4a , 4b , 4c , 4d ) were synthesized using tetrabutylammonium bromide as phase transfer catalyst (PTC). N‐[(2E)‐5,7‐dimethyl‐2H‐[1,2,4] thiadiazolo [2,3‐a] pyrimidin‐2‐ylidene] derivatives ( 4a , 4b , 4c , 4d ) were prepared by oxidative cyclization of 3a , 3b , 3c , 3d . The structures of these novel compounds were characterized by IR, 1H NMR, 13C NMR, mass spectrometry, and the elemental analysis. The crystal structures were determined from single crystal X‐ray diffraction data. The results indicated that the compounds possessed a broad spectrum of activity against the tested microorganisms and showed higher activity against fungi than bacteria. Compounds 3d and 3a exhibited the greatest antimicrobial activity. J. Heterocyclic Chem., 2011.  相似文献   

14.
The target compounds 6,6′‐(1,4‐phenylenedimethylene)‐bis(3‐thioxo‐1,2,4‐triazin‐5(1H )‐one) 4,5 were prepared from reaction of oxazolone 1 with thiosemicarbazide and 4‐phenylthiosemicarbazide, in potassium hydroxide solution, respectively. Reaction of 4 with hydrazonoyl halides 6 afforded triazolotriazine derivatives 7 . Also, 5 reacted with 6 to give the corresponding substitution products 8 . Antimicrobial and antitumor activities for some compounds were studied.  相似文献   

15.
On the basis of the principle of combination of active groups, a series of novel N‐(4‐([2,2′:5′,2′′‐terthiophen]‐5‐yl)‐2‐methylbut‐3‐yn‐2‐yl) benzamide derivatives were designed, synthesized and systematically evaluated for their antiviral activity against tobacco mosaic virus (TMV). The bioassay results showed that most of these compounds displayed good anti‐TMV activity, and some of them exhibited higher antiviral activity than commercial Ningnanmycin. Especially, compound 8e with excellent anti‐TMV activity (inactivation activity, 92.3%/500 µg·mL?1; curative activity, 85.7%/500 µg·mL?1 and protection activity, 64.7%/500 µg·mL?1) emerged as a potential inhibitor of plant virus TMV. Quantitative structure‐activity relationship studies proved that the van der Waals volume (V) and electronic parameter (∑(∑σo+σp) and ∑σm) for the substituent R1 were very important for antiviral activities in this class of compounds.  相似文献   

16.
Synthesis of {3‐[1‐(ethoxycarbonyl)‐[1,2,4]triazolo[4,3‐a]quinoxalin‐4‐yl]‐1‐phenyl‐1H‐pyrazol‐5‐yl}methyl ethyl oxalate ( 2 ), ethyl 4‐[5‐(acetoxymethyl)‐1‐phenyl‐1H‐pyrazol‐3‐yl]‐[1,2,4]triazolo[4,3‐a]quioxaline‐1‐carboxylate ( 4 ), [4‐halo‐1‐phenyl‐3‐(1‐phenyl‐[1,2,4]triazolo[4,3‐a]quioxalin‐4‐yl)‐1H‐pyrazol‐5‐yl]methyl acetate ( 11 ), {4‐halo‐3‐[1‐methyl‐[1,2,4]triazolo[4,3‐a]quinoxalin‐4‐yl]‐1‐phenyl‐1H‐pyraz‐ol‐5‐yl}methyl acetate ( 13 ), and [3‐([1,2,4]triazolo‐[4,3‐a]quinoxalin‐4‐yl)‐4‐halo‐1‐phenyl‐1H‐pyrazol‐5‐yl] methyl formate ( 15 ) was accomplished. The structural investigation of the new compounds is based on chemical and spectroscopic evidences. J. Heterocyclic Chem., (2011)  相似文献   

17.
N‐(Substituted aryl/cyclohexyl)‐N'‐[5‐bromo‐5‐nitro‐2‐oxido‐1,3,2‐dioxaphosphorinane‐2‐yl]ureas RR'P(O)NHC(O)NHR' (5) were synthesized by the reactions of 2‐bromo‐2‐nitro‐1,3‐propanediol (4) with chlorides of aryl/cyclohexyl carbamidophosphoric acids (3) in the presence of triethylamine at room temperature. Their ir, 1H, 13C and 31P nmr spectral data are discussed.  相似文献   

18.
The title compound, C25H35N3O2, is a novel urea derivative. Pairs of intermolecular N—H...O hydrogen bonds join the molecules into centrosymmetric R22(12) and R22(18) dimeric rings, which are alternately linked into one‐dimensional polymeric chains along the [010] direction. The parallel chains are connected via C—H...O hydrogen bonds to generate a two‐dimensional framework structure parallel to the (001) plane. The title compound was also modelled by solid‐state density functional theory (DFT) calculations. A comparison of the molecular conformation and hydrogen‐bond geometry obtained from the X‐ray structure analysis and the theoretical study clearly indicates that the DFT calculation agrees closely with the X‐ray structure.  相似文献   

19.
Isomeric type 1 and 2 amino‐1,2,4‐triazoles condensed with thiazole, thiazine and thiazepine rings were synthesised from 5‐amino‐2,3‐dihydro‐1H‐1,2,4‐triazol‐3‐thione and α,ω‐dihaloalkanes through the 5‐amino‐3‐(ω‐haloalkylthio)‐1H‐1,2,4‐triazole intermediates. The reaction conditions leading to derivatives 1 and 2 , respectively, were determined. A general and safe method for the unambiguous differentiation between structures 1 and 2 was offered by their cmr spectra.  相似文献   

20.
A novel series of coumarin substituted triazolo‐thiadiazine derivatives were designed and synthesized by using 5‐methyl isoxazole‐3‐carboxylic acid ( 1 ), thiocarbohydrazide ( 2 ), and various substituted 3‐(2‐bromo acetyl) coumarins ( 4a , 4b , 4c , 4e , 4d , 4f , 4g , 4h , 4i , 4j ). Fusion of 5‐methyl isoxazole‐3‐carboxylic acid with thiocarbohydrazide resulted in the formation of the intermediate 4‐amino‐5‐(5‐methylisoxazol‐3‐yl)‐4H‐1,2,4‐triazole‐3‐thiol ( 3 ). This intermediate on further reaction with substituted 3‐(2‐bromo acetyl) coumarins under simple reaction conditions formed the title products 3‐(3‐(5‐methylisoxazol‐3‐yl)‐7H‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazin‐6‐yl‐2H‐chromen‐2‐ones ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j ) in good to excellent yields. All the synthesized compounds were well characterized by physical, analytical, and spectroscopic techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号