首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
The free energy perturbation (FEP) methodology is the most accurate means of estimating relative binding affinities between inhibitors and protein variants. In this article, the importance of hydrophobic and hydrophilic residues to the binding of adenosine monophosphate (AMP) to the fructose 1,6-bisphosphatase (FBPase), a target enzyme for type-II diabetes, was examined by FEP method. Five mutations were made to the FBPase enzyme with AMP inhibitor bound: 113Tyr --> 113Phe, 31Thr --> 31Ala, 31Thr --> 31Ser, 177Met --> 177Ala, and 30Leu --> 30Phe. These mutations test the strength of hydrogen bonds and van der Waals interactions between the ligand and enzyme. The calculated relative free energies indicated that: 113Tyr and 31Thr play an important role, each via two hydrogen bonds affecting the binding affinity of inhibitor AMP to FBPase, and any changes in these hydrogen bonds due to mutations on the protein will have significant effect on the binding affinity of AMP to FBPase, consistent to experimental results. Also, the free energy calculations clearly show that the hydrophilic interactions are more important than the hydrophobic interactions of the binding pocket of FBPase.  相似文献   

2.
A free energy perturbation (FEP) method was developed that uses ab initio quantum mechanics (QM) for treating the solute molecules and molecular mechanics (MM) for treating the surroundings. Like our earlier results using AM1 semi empirical QMs, the ab initio QM/MM-based FEP method was shown to accurately calculate relative solvation free energies for a diverse set of small molecules that differ significantly in structure, aromaticity, hydrogen bonding potential, and electron density. Accuracy was similar to or better than conventional FEP methods. The QM/MM-based methods eliminate the need for time-consuming development of MM force field parameters, which are frequently required for drug-like molecules containing structural motifs not adequately described by MM. Future automation of the method and parallelization of the code for Linux 128/256/512 clusters is expected to enhance the speed and increase its use for drug design and lead optimization.  相似文献   

3.
Molecular dynamics (MD) simulations in conjunction with the thermodynamic cycle perturbation approach has been used to calculate relative solvation free energies for acetone to acetaldehyde, acetone to pyruvic acid, acetone to 1,1,1-trifluoroacetone, acetone to 1,1,1-trichloroacetone, acetone to 2,3-butanedione, acetone to cyclopropanone, and formaldehyde hydrate to formaldehyde. To evaluate the dependence of relative solvation free energy convergence on MD simulation length and starting configuration two studies were performed. In the first study, each simulation started from the same well-equilibrated configuration and the length was varied from 153 to 1530 ps. In the second study, the relative solvation free energy differences were calculated starting from three different configurations and using 510 ps of MD simulation for each mutation. These results clearly indicate that, even for molecules with limited conformational flexibility, a simulation length of 510 ps or greater is required to obtain satisfactory convergence and, for the mutations of large structural changes between reactant and product, such as cyclopropanone to acetone, require much longer simulation lengths to achieve satisfactory convergence. These results also show that performing one long simulation is better than averaging results from three shortest simulations of the same length using different starting conformations. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1018–1027, 1999  相似文献   

4.
An important task of biomolecular simulation is the calculation of relative binding free energies upon chemical modification of partner molecules in a biomolecular complex. The potential of mean force (PMF) along a reaction coordinate for association or dissociation of the complex can be used to estimate binding affinities. A free energy perturbation approach, termed umbrella sampling (US) perturbation, has been designed that allows an efficient calculation of the change of the PMF upon modification of a binding partner based on the trajectories obtained for the wild type reference complex. The approach was tested on the interaction of modified water molecules in aqueous solution and applied to in silico alanine scanning of a peptide‐protein complex. For the water interaction test case, excellent agreement with an explicit PMF calculation for each modification was obtained as long as no long range electrostatic perturbations were considered. For the alanine scanning, the experimentally determined ranking and binding affinity changes upon alanine substitutions could be reproduced within 0.1–2.0 kcal/mol. In addition, good agreement with explicitly calculated PMFs was obtained mostly within the sampling uncertainty. The combined US and perturbation approach yields, under the condition of sufficiently small system modifications, rigorously derived changes in free energy and is applicable to any PMF calculation. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio‐)chemical thermodynamics. Many important endogenous receptor‐binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice‐summation scheme or a cutoff‐truncation scheme with Barker–Watts reaction‐field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest‐host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free‐energy calculation studies if changes in the net charge are involved. © 2013 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

6.
4‐Hydroxyphenylpyruvate dioxygenase is a relevant target in both pharmaceutical and agricultural research. We report on molecular dynamics simulations and free energy calculations on this enzyme, in complex with 12 inhibitors for which experimental affinities were determined. We applied the thermodynamic integration approach and the more efficient one‐step perturbation. Even though simulations seem well converged and both methods show excellent agreement between them, the correlation with the experimental values remains poor. We investigate the effect of slight modifications on the charge distribution of these highly conjugated systems and find that accurate models can be obtained when using improved force field parameters. This study gives insight into the applicability of free energy methods and current limitations in force field parameterization. © 2011 Wiley Periodicals, Inc. J Comput Chem 2011  相似文献   

7.
Free energy perturbation/molecular dynamics simulations have been carried out on copper/azurin systems calculating the binding affinities of copper (II) ion to azurin either in the native or in the unfolded state. In order to test the validity of the strategy adopted for the calculations and to establish what force field is suitable for these kinds of calculations, three different force fields, AMBER, CVFF, and CFF, have been alternatively used for the calculations and the results have been compared with experimental data obtained by spectroscopic titrations of copper (II)/azurin solutions and denaturation experiments. Our findings have pointed out that only CFF gives satisfactory results, thus providing a reliable tool for copper binding simulations in copper protein.  相似文献   

8.
Alchemical free energy simulations are amongst the most accurate techniques for the computation of the free energy changes associated with noncovalent protein–ligand interactions. A procedure is presented to estimate the relative binding free energies of several ligands to the same protein target where multiple, low‐energy configurational substates might coexist, as opposed to one unique structure. The contributions of all individual substates were estimated, explicitly, with the free energy perturbation method, and combined in a rigorous fashion to compute the overall relative binding free energies and dissociation constants. It is shown that, unless the most stable bound forms are known a priori, inaccurate results may be obtained if the contributions of multiple substates are ignored. The method was applied to study the complex formed between human catechol‐O‐methyltransferase and BIA 9‐1067, a newly developed tight‐binding inhibitor that is currently under clinical evaluation for the therapy of Parkinson's disease. Our results reveal an exceptionally high‐binding affinity (Kd in subpicomolar range) and provide insightful clues on the interactions and mechanism of inhibition. The inhibitor is, itself, a slowly reacting substrate of the target enzyme and is released from the complex in the form of O‐methylated product. By comparing the experimental catalytic rate (kcat) and the estimated dissociation rate (koff) constants of the enzyme‐inhibitor complex, one can conclude that the observed inhibition potency (Ki) is primarily dependent on the catalytic rate constant of the inhibitor's O‐methylation, rather than the rate constant of dissociation of the complex. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
In this article, the convergence of quantum mechanical (QM) free‐energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa‐acid deep‐cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158–224 atoms). We use single‐step exponential averaging (ssEA) and the non‐Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi‐empirical PM6‐DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free‐energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

10.
The BACE‐1 enzyme is a prime target to find a cure to Alzheimer's disease. In this article, we used the MM‐PBSA approach to compute the binding free energies of 46 reported ligands to this enzyme. After showing that the most probable protonation state of the catalytic dyad is mono‐protonated (on ASP32), we performed a thorough analysis of the parameters influencing the sampling of the conformational space (in total, more than 35 μs of simulations were performed). We show that ten simulations of 2 ns gives better results than one of 50 ns. We also investigated the influence of the protein force field, the water model, the periodic boundary conditions artifacts (box size), as well as the ionic strength. Amber03 with TIP3P, a minimal distance of 1.0 nm between the protein and the box edges and a ionic strength of I = 0.2 M provides the optimal correlation with experiments. Overall, when using these parameters, a Pearson correlation coefficient of R = 0.84 (R 2 = 0.71) is obtained for the 46 ligands, spanning eight orders of magnitude of K d (from 0.017 nm to 2000 μM, i.e., from −14.7 to −3.7 kcal/mol), with a ligand size from 22 to 136 atoms (from 138 to 937 g/mol). After a two‐parameter fit of the binding affinities for 12 of the ligands, an error of RMSD = 1.7 kcal/mol was obtained for the remaining ligands. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号