首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
《Electroanalysis》2004,16(10):860-865
The electrocatalytic oxidation of sulfite has been studied on the cobalt pentacyanonitrosylferrate modified glassy carbon electrode (CoPCNF). The CoPCNF films on the glassy carbon electrodes show an excellent electrocatalytic activity toward the oxidation of sulfite in 0.5 M KNO3. The kinetics of the catalytic reaction was investigated by using cyclic voltammetry, rotating disk electrode (RDE) voltammetry and chronoamperometry. The average value of the rate constant, K, for the catalytic reaction and the diffusion coefficient, D, were evaluated by different approaches for sulfite and found to be 2.9×102 M?1s?1 and 4.6×10?6 cm2s?1, respectively. At a fixed potential under hydrodynamic conditions (stirred solutions), the oxidation current is proportional to the sulfite concentration and the calibration plot was linear over the concentration range 5×10?6–1×10?4 M. The detection limit of the method is 3×10?6 M., low enough for the trace sulfite determination.  相似文献   

2.
H. Razmi  H. Heidari 《Electroanalysis》2008,20(21):2370-2378
Lead pentacyanonitrosylferrate (PbPCNF), a new Prussian blue analog, was immobilized on the surface of a carbon ceramic electrode (CCE) prepared by sol‐gel method. The immobilization process consists of adding a certain amount of metallic lead to the electrode matrix before gelation, and chemical derivatization of Pb on the electrode surface to a PbPCNF solid film by immersing the electrode in a solution of sodium pentacyanonitrosylferrate (PCNF). The composition of the synthesized PbPCNF was characterized by FTIR, scanning electron microscopy (SEM), and energy‐dispersive X‐ray (EDX) techniques. The resulting modified electrode showed electroactivity at two redox centers. The electrochemical behavior of the PbPCNF modified carbon ceramic electrode (PbPCNF|CCE) was studied by cyclic voltammetry. Under optimized conditions the peak‐to‐peak separation is only 39 mV, indicative of a surface reaction. Ion effects of the supporting electrolyte suggest that cations have a considerable effect on the electrochemical behavior of the modified electrode. The transfer coefficient (α) and the charge transfer rate constant at the modifying film|electrode interface (ks) were calculated. The electrocatalytic activity of the modified electrode toward the electro‐reduction of peroxodisulfate was studied in details.  相似文献   

3.
Based on single‐walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE/SWCNTs), a novel method was presented for the determination of L ‐tyrosine. The GCE/SWCNTs exhibited remarkable catalytic and enhanced effects on the oxidation of L ‐tyrosine. In 0.10 mol/L citric acid‐sodium citrate buffer solution, the oxidation potential of L ‐tyrosine shifted negatively from +1.23 V at bare GCE to +0.76 V at GCE/SWCNTs. Under the optimized experimental conditions, the linear range of the modified electrode to the concentration of L ‐tyrosine was 5.0×10?6–2.0×10?5 mol/L (R1=0.9952) and 2.7×10?5–2.6×10?4 mol/L (R2=0.9998) with a detection limit of 9.3×10?8 mol/L. The kinetic parameters such as α (charge transfer coefficient) and D (diffusion coefficient) were evaluated to be 0.66, 9.82×10?5 cm2 s?1, respectively. And the electrochemical mechanism of L ‐tyrosine was also discussed.  相似文献   

4.
The sol‐gel technique was used to construct tin pentacyanonitrosylferrate (SnPCNF) modified composite carbon ceramic electrode (CCE). This involves two steps: construction of CCE containing metallic Sn powder and then electrochemical creating of SnPCNF on the surface of CCE. The SnPCNF modified CCE (SnPCNFlCCE) was characterized by energy‐dispersive X‐ray (EDX), FTIR and cyclic voltammetry (CV) techniques. The SnPCNF film showed electrocatalytic activity toward the oxidation of L ‐cysteine. A linear calibration plot was obtained over the L ‐cysteine concentration range 1–51 μM using chronoamperometry. L ‐cysteine was determined amperometrically at the surface of this modified electrode. The detection limit (for a signal to noise of 3) and sensitivity were found to be 0.62 μM and 126 μA/mM, respectively.  相似文献   

5.
《Electroanalysis》2005,17(22):2043-2051
The electrochemical behavior of L ‐cysteine studied at the surface of ferrocenecarboxylic acid modified carbon paste electrode (FCMCPE) in aqueous media using cyclic voltammetry and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00) in cyclic voltammetry, the oxidation of L ‐cysteine is occurs at a potential about 580 mV less positive than that an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and catalytic reaction rate constant, Kh were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of L ‐cysteine showed a linear dependent on the L ‐cysteine concentration and linear calibration curves were obtained in the ranges of 10?5 M–10?3 M and 4.1×10?8 M–3.7×10?5 M of L ‐cysteine concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods respectively. The detection limits (2δ) were determined as 2.4×10?6 M and 2.5×10?8 M by CV and DPV methods. This method was also examined for determination of L ‐cysteine in some samples, such as Soya protein powder, serum of human blood by using recovery and standard addition methods.  相似文献   

6.
7.
《Electroanalysis》2005,17(7):619-624
The electrocatalytic oxidation of L ‐cysteine by (ferrocenylmethyl)trimethylammonium at a glassy carbon electrode in 0.1 M Na2SO4 aqueous solution has been studied. The rate constant for the catalytic reaction was evaluated as (4.28±0.05)×103 M?1 s?1 by chronoamperometry. Experimental conditions, which maximize the current efficiency of the electrocatalytic oxidation, such as pH value and the concentration of the catalyst, were also investigated. The experimental results of electrocatalytic kinetics of L ‐cysteine oxidation on GCE in the presence of (ferrocenylmethyl)trimethylammonium obviously support the reaction mechanism proposed and the rate determining step assumed in scheme described in this work.  相似文献   

8.
The present work describes oxidation of ascorbic acid (AA) at octacyanomolybdate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐Mo(CN) film modified glassy carbon electrode in 0.1 M H2SO4. The modified electrode has been successfully prepared by means of electrostatically trapping Mo(CN) mediator in the cationic film of glutaraldehyde‐cross‐linked poly‐L ‐lysine. The dependence of peak current of modified electrode in pure supporting indicates that the charge transfer in the film was a mixed process at low scan rates (5 to 200 mV s?1), and kinetically restrained at higher scan rates (200 to 1000 mV s?1). Cyclic voltammetry and rotating disk electrode (RDE) techniques are used to investigate the electrocatalytic oxidation of ascorbic acid and compared with its oxidation at bare and undoped PLL‐GA film coated electrodes. The rate constant of catalytic reaction k obtained from RDE analysis was found to be 9.5×105 cm3 mol?1 s?1. The analytical determination of ascorbic acid has been carried out using RDE technique over the physiological interest of ascorbic acid concentrations with a sensitivity of 75 μA mM?1. Amperometric estimation of AA in stirred solution shows a sensitivity of 15 μA mM?1 over the linear concentration range between 50 and 1200 μM. Interestingly, PLL‐GA‐Mo(CN) modified electrode facilitated the oxidation of ascorbic acid but not responded to other electroactive biomolecules such as dopamine, uric acid, NADH, glucose. This unique feature of PLL‐GA‐Mo(CN) modified electrode allowed for the development of a highly selective method for the determination of ascorbic acid in the presence of interferents.  相似文献   

9.
Acyclovir is an antiviral effective drug active compound. A glassy carbon electrode (GCE) was modified with an electropolymerized film of p‐aminobenzene sulfonic acid (p‐ABSA) in phosphate buffer solution (PBS). The polymer film‐modified electrode was used to electrochemically detect acyclovir. Polymer film showed excellent electrocatalytic activity for the oxidation of acyclovir. The anodic peak potential value of the acyclovir at the poly(p‐ABSA) modified glassy carbon electrode was 950 mV obtained by DPV. A linear calibration curve for DPV analysis was constructed in the acyclovir concentration range 2×10?7–9×10?6 mol L?1. Limit of detection (LOD) and limit of quantification (LOQ) were obtained as 5.57×10?8 and 1.85×10?7 mol L?1 respectively. The proposed method exhibits good recovery and reproducibility.  相似文献   

10.
11.
《Electroanalysis》2006,18(17):1722-1726
The electrochemical properties of L ‐cysteic acid studied at the surface of p‐bromanil (tetrabromo‐p‐benzoquinone) modified carbon paste electrode (BMCPE) in aqueous media by cyclic voltammetry (CV) and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00) in cyclic voltammetry, the oxidation of L ‐cysteic acid at the surface of BMCPE occurs at a half‐wave potential of p‐bromanil redox system (e.g., 100 mV vs. Ag|AgCl|KClsat), whereas, L ‐cysteic acid was electroinactive in the testing potential ranges at the surface of bare carbon paste electrode. The apparent diffusion coefficient of spiked p‐bromanil in paraffin oil was also determined by using the Cottrell equation. The electrocatalytic oxidation peak current of L ‐cysteic acid exhibits a linear dependency to its concentration in the ranges of 8.00×10?6 M–6.00×10?3 M and 5.2×10?7 M–1.0×10?5 M using CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (2σ) were determined as 5.00×10?6 M and 4.00×10?7 M by CV and DPV methods. This method was used as a new, selective, rapid, simple, precise and suitable voltammetric method for determination of L ‐cysteic acid in serum of patient's blood with migraine disease.  相似文献   

12.
A new strategy to make the electrochemical sensor was presented, through combining gold nanoparticles (GNPs) with reduced graphene oxide (rGO) via L‐cysteine (L‐cys) as crosslinker. The resulting electrodes were characterized by scanning electron microscopy (SEM) and electrochemical methods. And it was applied to develop a high‐sensitive electrochemical sensor for determination of sophoridine. Compared with the bare GCE and reduced graphene oxide modified electrode, the resulting electrodes exhibited excellent response toward the oxidation of sophoridine by significantly enhancing the oxidation peak currents and decreasing the overpotential of sophoridine. Under the selected conditions, there exist the linear relation between the oxidation peak currents and sophoridine concentration in the range of 1.0 x 10‐6~1.0 x 10‐4 mol L‐1, with detection limit of 4.0 x 10‐7 mol L‐1. At the same time, the method can be successfully applied to the quantitative determination of sophoridine in injection samples and its result is satisfactory.  相似文献   

13.
The chemically modified electrode constructed by chemically cross-linking of redox mediator thionin with toluene diisocyanate(TDI) directly at the surface of a spectrographic graphite electrode shows a significant electrocatalytic activity to the oxidation of reduced nicotinamide adenine dinucleotide(NADH) with oxidation overpotential reduced by 310mV.In the potential range from-0.1 to 0.3V,the adsorbed thionin -TDI behaves as a one electron and one proton reversible redox process. The modified electrode achieves a steady-state current of NADH within 20s and the detection limit is about 1.5μm.  相似文献   

14.
In this study, a Tosflex (a perfluoro‐anion‐exchange membrane) modified glassy carbon electrode has been used to detect 2‐naphthalenol (2‐naphthol) in aqueous solutions in order to demonstrate the electroanalytical application of Tosflex. 2‐naphthol polymerizes upon electrochemical oxidation at a glassy carbon electrode; however, the current related to this oxidation is too small for analytical purpose at low concentration level. A Tosflex polymer modified glassy carbon electrode (TFGCE) was found of having capability to improve the detection limit because 2‐naphthol molecules deprotonated in basic solutions to form 2‐naphtholate anions that were accumulated to TFGCE by the anion‐exchange characteristic of Tosflex. The accumulated 2‐naphtholate anions were determined with the following differential pulse voltammetry. With 3 minutes accumulation at +0.05 V, the dependence of oxidation current versus concentration was linear from 8×10?7 M to 1×10?5 M with a regression coefficient of 0.999 and a detection limit of 2×10?7 M. Unlike many other anion‐exchange polymer modified electrodes, the TFGCE is stable at highly basic condition.  相似文献   

15.
《Electroanalysis》2005,17(14):1309-1316
The detection limit (about 0.017 μg mL?1) for voltammetric determination of iodide (peak at +0.87 V vs. Ag/AgCl at pH 2) at a glutaraldehyde‐cross‐linked poly‐L ‐lysine modified glassy carbon electrode involving oxidation to iodine was found to be several orders of magnitude lower than that for the voltammetric determination on a bare glassy carbon electrode. This method was applied successfully to the determination of iodide in two medicinal formulations. Idoxuridine was determined indirectly at the same electrode by accumulating it first at ?0.8 V vs. Ag/AgCl. At this potential the C? I bond in the adsorbed idoxuridine is reduced giving iodide, which is then determined at the modified electrode. The method was successfully applied to the determination of idoxuridine in a urine sample.  相似文献   

16.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

17.
用循环伏安法(CV),计时库仑法(CC),计时电流法(CA),线性扫描伏安法(LSV)及电流-时间曲线研究了甲氧苄啶(trimethoprim, TMP)在碳纳米管-Nafion修饰电极(MWCNTs-Nafion/GCE)上的电化学行为,电化学动力学性质以及电分析方法.结果表明,TMP在GCE上有一个极弱的氧化峰,而在MWCNTs-Nafion/GCE上出现一个敏锐的氧化峰,表明MWCNTs-Nafion/GCE对TMP电化学氧化具有良好的催化作用.在扫描速度为10~800 mV/s时其氧化峰电流与扫描速度平方根(v1/2)呈良好线性关系,表明TMP在MWCNTs-Nafion/GCE上的伏安行为是受扩散控制的电化学过程.TMP在MWCNTs-Nafion/GCE上氧化峰电流与浓度在5.0×10-6~1.0×10-3 mol/L范围内呈良好线性关系;检出限为6.6×10-7 mol/L;RSD在0.75%~1 69%之间;加标回收率在98.1%~101.1%之间.本方法简便快捷,测定结果令人满意,可用于TMP的电化学定量测定.  相似文献   

18.
阿魏酸聚合修饰玻碳电极的制备及其对NADH的催化氧化   总被引:8,自引:0,他引:8  
研究了阿魏酸修饰电极的制备、性质及对NADH的电催化作用.该电极在0.1mol/L磷酸缓冲溶液(pH=6.60)中,于-0.1~+0.50V(vs.Ag/AgCl)电位范围内呈现一对氧化还原峰,其式量电位E0为+0.188V(vs.Ag/AgCl),且E0随pH增加而负向移动.电子转移系数为0.496,表观电极反应速率常数(ks)为6.6s-1.电极反应的电子数为1且有1个质子参与.该修饰电极对NADH氧化具有很好的催化作用.在NADH存在下,电极过程由扩散控制,扩散系数为1.76×10-6cm2/s.NADH浓度在0.01~5.0mmol/L范围内与峰电流呈现良好的线性关系.通过计时安培法测得催化速率常数为6.82×103mol-1·L·s-1.  相似文献   

19.
Poly(malachite green) film modified Nafion‐coated glassy carbon electrodes have been prepared by potentiodynamic cycling in malachite green solution. The pH of polymerisation solution has only minor effect on film formation. Electrochemical quartz crystal microbalance (EQCM) was used to monitor the growth of the poly(malachite green) film. Cyclic voltammogram of the poly(malachite green) film shows a redox couple with well‐defined peaks. The redox response of the modified electrode was found to be depending on the pH of the contacting solution. The peak potentials were shifted to a less positive region with increasing pH and the dependence of the peak potential was found to be 56 mV per pH unit. The electrocatalytic behavior of poly(malachite green) film modified Nafion‐coated glassy carbon electrodes was tested towards oxidation of NADH, dopamine, and ascorbic acid. The oxidation of dopamine and ascorbic acid occurred at less positive potential on poly(malachite green) film compared to bare glassy carbon electrode. In the case of NADH, the overpotential was reduced substantially on modified electrode. Finally, the feasibility of utilizing poly(malachite green) film electrode in analytical estimation of ascorbic acid was demonstrated in flow injection analysis.  相似文献   

20.
The present work describes preparation, characterization, and electrocatalytic behavior of a hexacyanoferrate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐Fe(CN) film modified glassy carbon electrode. The modified electrode has been successfully prepared by electrostatically binding negatively charged Fe(CN) mediator into cross‐linked poly‐L ‐lysine cationic film. The dependence of the peak current of the modified electrode in pure supporting electrolyte (pH 6.8 phosphate buffer solution; PBS) shows that the charge transport in the film is fast and relatively unimpeded at lower scan rates. Cyclic voltammetry and rotating disk electrode (RDE) techniques are used to investigate the electrocatalytic activity of modified electrode towards oxidation of ascorbic acid. The rate constant (k), of catalytic reaction between electrogenerated Fe(CN) ions and ascorbic acid, obtained from RDE analysis was found to be 5.53×105 cm3 mol?1 s?1. Finally, the PLL‐GA‐Fe(CN) film electrodes are successfully used for the individual estimation of ascorbic acid in the concentration range of physiological interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号