首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-fluid model of gas–solid particle flows that is valid for a wide range of the solid-phase volume concentration (dilute to dense) is presented. The governing equations of the fluid phase are obtained by volume averaging the Navier–Stokes equations for an incompressible fluid. The solid-phase macroscopic equations are derived using an approach that is based on the kinetic theory of dense gases. This approach accounts for particle–particle collisions. The model is implemented in a control-volume finite element method for simulations of the flows of interest in two-dimensional, planar or axisymmetric, domains. The chosen mathematical model and the proposed numerical method are applied to three test problems and one demonstration problem. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
A system of equations is provided that may be used in the study of relativistic charged particle beams. The equations are based upon the equations of the kinetic theory for first, second and third order moments and the system is closed by letting the third order moment depend on the lower order ones. The form of that dependence is formally equal to the explicit constitutive function given by extended thermodynamics. However, here the contributions to the third order moment can be classed as being different in order of magnitude, because there is a smallness parameter characterizing the small dispersion of the particle beam. The resulting system of equations is quite specific, it is fully covariant and it is equivalent to a symmetric hyperbolic system thus ensuring existence and uniqueness of solutions.  相似文献   

3.
The lattice‐BGK method has been extended by introducing additional, free parameters in the original formulation of the lattice‐BGK methods. The relationship between these parameters and the macroscopic moment equations is analysed by Taylor series and Chapman–Enskog expansion. The parameters are determined from the macroscopic moment equations by comparisons with the governing equations to be modelled. Extensions are presented for the Navier–Stokes equations at low Mach numbers in Cartesian or axisymmetric coordinates with constant or variable density, for scalar convection–diffusion equations and for equations of Poisson type. The generalized lattice‐BGK concept is demonstrated by two applications of chemical engineering. These are the computation of chemically reacting flow through an axisymmetric reactor and of the transport and deposition of particles to filters under the action of different forces. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This paper is concerned with the derivation of dynamical equations for freely deforming bodies with more than six degrees of freedom which are immersed in an inviscid incompressible fluid. Following Proudman's pioneering work for a sphere our method is applied to a fluid with uniform vorticity but otherwise arbitrary non-uniform strain-rate at the instant after the body has been impulsively introduced into the fluid. The rotational disturbance field is consequently zero thus enabling the generalised force–moments of arbitrary order to be determined from a Laplace problem through the use of Green's theorem and generalised Kirchhoff potentials. An infinite system of equations is obtained each which contains an inertial term, given by the rate of change of the generalised Kelvin Impulse, a generalised lift, a deformation-induced surface momentum flux and a surface kinetic energy. The assumption of an impulsive start places no constraint on the use of our force–moment formulae in irrotational flow but they can only be applied at the starting instant in rotational flow or, when the strain-rate is weak, for early times in the body's motion. Nonetheless, the start conditions for the rotational case can be created experimentally and be applied to initially free tumbling bodies when they start to deform. This newly identified equation system provides the foundation for new analytical and numerical approaches to the macroscopic modelling of freely deforming bodies and bubbly two-phase flow. In particular, the equations show that the added masses are not sufficient to characterise the body's geometry and that independent geometric constants are also required, here referred to as the added Kirchhoff energies. Finally, the zero- and first-order force–moment equations are used to derive the force and torque that apply to bodies with six degrees of freedom and their analytic forms are shown to agree with independent results for arbitrarily shaped deforming bodies in both rotational and irrotational flows.  相似文献   

5.
颗粒间滚动阻力对颗粒体系的稳定性起着重要作用. 在传统的离散元法中, 滚动阻力模型通常由转动弹簧、转动黏壶和摩擦元件表达, 颗粒滚动动能由黏滞力(矩)和摩擦力做功耗散. 由于黏滞力(矩)与滚动速度相关, 临近静止状态的颗粒滚动速度变小, 动能耗散减弱, 传统的离散元模拟得到颗粒由滚动到静止耗费的时间比试验观测的结果要长. 为解决这一问题, 基于摩擦学理论分析了滚动阻力产生的材料滞弹性机理, 将其引入离散元滚动阻力模型, 提出了一种速度无关型动能耗散的滞弹簧, 给出了滞弹簧的弹性恢复力计算公式, 建立了一种新型的离散元滞弹性滚动阻力模型(HDEM). 为验证新型滚动阻力模型的正确性, 通过一个光学物理试验对单个圆形颗粒试件的自由滚动过程进行了测量, 将测量数据与新型的滞弹型离散元模型和传统离散元模型计算结果进行了对比. 结果显示, 基于滞弹性滚动阻力模型HDEM计算结果与试验数据吻合程度更高, 而且模拟得到的颗粒摆动频率更符合试验现象.   相似文献   

6.
7.
8.
9.
We propose a two-fluid theory to model a dilute polymer solution assuming that it consists of two phases, polymer and solvent, with two distinct macroscopic velocities. The solvent phase velocity is governed by the macroscopic Navier–Stokes equations with the addition of a force term describing the interaction between the two phases. The polymer phase is described on the mesoscopic level using a dumbbell model and its macroscopic velocity is obtained through averaging. We start by writing down the full phase-space distribution function for the dumbbells and then obtain the inertialess limits for the Fokker–Planck equation and for the averaged friction force acting between the phases from a rigorous asymptotic analysis. The resulting equations are relevant to the modelling of strongly non-homogeneous flows, while the standard kinetic model is recovered in the locally homogeneous case.  相似文献   

10.
高浓度固-液两相流紊流的动理学模型   总被引:5,自引:0,他引:5  
唐学林  徐宇  吴玉林 《力学学报》2002,34(6):956-962
采用分子动理学方法,基于固-液两相流液相分子或颗粒相颗粒的Boltzmann方程,对Boltzmann方程分别取零矩和一次矩,则得到高浓度固-液两相流紊流的连续方程和动量方程,再和较成熟的低浓度两相流连续方程和动量方程比较,取低浓度两相流控制方程中较成熟合理的有关项和高浓度时由动理学方法推导出的颗粒间碰撞项,则得到高浓度固-液两相流紊流的最终控制方程:连续方程和动量方程.  相似文献   

11.
The macroscopic equations of motion of a two-component system consisting of a continuous phase and a large number of solid particles are considered. The generalized kinetic equation of a pseudogas obtained earlier by the author is expressed in a form more convenient for calculations. The Chapman-Enskog method is used to solve the kinetic equation at small Knudsen numbers and dimensionless number characterizing the transfer of momentum between the phases of order unity. Because of the influence of the continuous phase, the stress tensor in the macroscopic conservation equations of the pseudogas is anisotropic. The obtained macroscopic equations of the pseudogas are more general than the ones proposed earlier by Myasnikov, this being due to the anisotropy of the time constants which occur in the operator of the hydrodynamic interaction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 39–44, March–April, 1980.I thank V. P. Myasnikov for posing the problem and for helpful discussions.  相似文献   

12.
The order of magnitude method offers an alternative to the Chapman-Enskog and Grad methods to derive macroscopic transport equations for rarefied gas flows. This method yields the regularized 13 moment equations (R13) and a generalization of Grad’s 13 moment equations for non-Maxwellian molecules. Both sets of equations are presented and discussed. Solutions of these systems of equations are considered for steady state Couette flow. The order of magnitude method is used to further reduce the generalized Grad equations to the non-linear bulk equations, which are of second order in the Knudsen number. Knudsen layers result from the linearized R13 equations, which are of the third order. Superpositions of bulk solutions and Knudsen layers show good agreement with DSMC calculations for Knudsen numbers up to 0.5.   相似文献   

13.
In this work hydrodynamics of multicomponent ideal gas mixtures have been studied. Starting from the kinetic equations, the Eulerian approach is used to derive a new set of conservation equations for the multicomponent system where each component may have different velocity and kinetic temperature. The equations are based on the Grad's method of moment derived from the kinetic model in a relaxation time approximation (RTA). Based on this model which contains separate equation sets for each component of the system, a computer code has been developed for numerical computation of compressible flows of binary gas mixture in generalized curvilinear boundary conforming coordinates. Since these equations are similar to the Navier-Stokes equations for the single fluid systems, the same numerical methods are applied to these new equations. The Roe's numerical scheme is used to discretize the convective terms of governing fluid flow equations. The prepared algorithm and the computer code are capable of computing and presenting flow fields of each component of the system separately as well as the average flow field of the multicomponent gas system as a whole. Comparison of the present code results with those of a more common algorithm based on the mixture theory in a supersonic converging-diverging nozzle provides the validation of the present formulation. Afterwards, a more involved nozzle cooling problem with a binary ideal gas (helium-xenon) is chosen to compare the present results with those of the ordinary mixture theory. The present model provides the details of the flow fields of each component separately which is not available otherwise. It is also shown that the separate fluids treatment, such as the present study, is crucial when considering time scales on the order of (or shorter than) the intercollisions relaxation times.  相似文献   

14.
We study the effect of the Maximum Entropy Principle (MEP) on the thermodynamic behaviour of gases. The MEP relies on the kinetic theory of gases and yields the local constitutive equations of Extended Thermodynamics. There are two extreme cases on the scale of the kinetic theory: Dominance of particle interactions and free flight. In its current form the MEP gives the phase density that maximizes the entropy at each instant of time. This is appropriate in case of dominant particle interaction but it is not adequate for free flight. Here we introduce a modified MEP that is capable to link both extreme cases. To illustrate the way the modified MEP works, we consider an example which leads in the case of dominant particle interactions to the Euler equations. In addition there results a representation theorem that contains the global solutions of the Euler equations with all shock interactions for arbitrary large variations of the initial data. Received May 6, 1998  相似文献   

15.
The fundamental kinetic equation of gas theory, the Boltzniann equation, is a complex integrodiffcrential equation. The difficulties associated with its solution are the result not only of the large number of independent variables, seven in the general case, but also of the very complicated structure of the collision integral. However, for the mechanics of rarefied gases the primary interest lies not in the distribution function itself, which satisfies the Boltzmann equation, but rather in its first few moments, i.e., the averaged characteristics. This circumstance suggests the possibility of obtaining the averaged quantities by a simpler way than the direct method of direct solution of the Boltzmann equation with subsequent calculation of the integrals.It is well known that if a distribution function satisfies the Boltzmann equation, then its moments satisfy an infinite system of moment equations. Consequently, if we wish to obtain with satisfactory accuracy some number of first moments, then we must require that these moments satisfy the exact system of moment equations. However, this does not mean that to determine the moments of interest to us we must solve this system, particularly since the system of moment equations is not closed. The closure of the system by specifying the form of the distribution function (method of moments) can be considered only as a rough approximate method of solving problems. First, in this case it is not possible to satisfy all the equations and we must limit ourselves to certain of the equations; second, generally speaking, we do not know which equation the selected distribution function satisfies, and, consequently, we do not know to what degree it has the properties of the distribution function which satisfies the Boltzmann equation.A more reliable technique for solving the problems of rarefied gasdynamics is that based on the approximation of the Boltzmann equation, more precisely, the approximation of the collision integral. The idea of replacing the collision integral by a simpler expression is not new [1–4]. The kinetic equations obtained as a result of this replacement are usually termed model equations, since their derivation is usually based on physical arguments and not on the direct use of the properties of the Boltzmann collision integral. In this connection we do not know to what degree the solutions of the Boltzmann equation and the model equations are close, particularly since the latter do not yield the possibility of refining the solution. Exceptions are the kinetic model for the linearized Boltzmann equation [5] and the sequence of model equations of [6], constructed by a method which is to some degree analogous with that of [5].In the present paper we suggest for the simplification of the solution of rarefied gas mechanics problems a technique for constructing a sequence of approximate kinetic equations which is based on an approximation of the collision integral. For each approximate equation (i.e., equation with an approximate collision operator) the first few moment equations coincide with the exact moment equations. It is assumed that the accuracy of the approximate equation increases with increase of the number of exact moment equations. Concretely, the approximation for the collision integral consists of a suitable approximation of the reverse collision integral and the collision frequency. The reverse collision integral is represented in the form of the product of the collision frequency and a function which characterizes the molecular velocity distribution resulting from the collisions, where the latter is selected in the form of a locally Maxwellian function multiplied by a polynomial in terms of the components of the molecular proper velocities. The collision frequency is approximated by a suitable expression which depends on the problem conditions. For the majority of problems it may obviously be taken equal to the collision frequency calculated from the locally Maxwellian distribution function; if necessary the error resulting from the inexact calculation of the collision frequency may be reduced by iterations.To illustrate the method, we solve the simplest problem of rarefied gas theory-the problem on the relaxation of an initially homogeneous and isotropic distribution in an unbounded space to an equilibrium distribution.The author wishes to thank A. A. Nikol'skii for discussions of the study and V. A. Rykov for the numerical results presented for the exact solution.  相似文献   

16.
In this paper, the circular function‐based gas‐kinetic scheme (CGKS), which was originally developed for simulation of flows on stationary grids, is extended to solve moving boundary problems on moving grids. Particularly, the unsteady flows through oscillating cascades are our major interests. The main idea of the CGKS is to discretize the macroscopic equations by the finite volume method while the fluxes at the cell interface are evaluated by locally reconstructing the solution of the continuous Boltzmann Bhatnagar–Gross–Krook equation. The present solver is based on the fact that the modified Boltzmann equation, which is expressed in a moving frame of reference, can recover the corresponding macroscopic equations with Chapman–Enskog expansion analysis. Different from the original Maxwellian function‐based gas‐kinetic scheme, in improving the computational efficiency, a simple circular function is used to describe the equilibrium state of distribution function. Considering that the concerned cascade oscillating problems belong to cases that the motion of surface boundary is known a priori, the dynamic mesh method is suitable and is adopted in the present work. In achieving the mesh deformation with high quality and efficiency, a hybrid dynamic mesh method named radial basic functions‐transfinite interpolation is presented and applied for cascade geometries. For validation, several numerical test cases involving a wide range are investigated. Numerical results show that the developed CGKS on moving grids is well applied for cascade oscillating flows. And for some cases where nonlinear effects are strong, the solution accuracy could be effectively improved by using the present method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
A new moment method for the modelling of polydisperse sprays is proposed that simultaneously takes into account the dispersion in droplet size and droplet velocity. For the derivation of this Eulerian method the kinetic spray equation is used which constitutes a partial differential equation for the probability density function of droplets. To reduce the complex kinetic spray equation to a form that can be managed with the available numerical procedures, moment transforms with respect to the droplet velocity and the droplet size are conducted. The resulting moment equations are closed by choosing an approximate probability density function which applies to polydisperse sprays. The method is successfully tested for configurations in which a polydisperse spray is either splashed, evaporated or effected by a Stokes drag force. The tests are organised in such a way that crossing of two spray distributions is always included. The new method is able to capture the polydisperse nature of sprays as well as the bi-(or multi-) modal character of the droplet velocity distribution function, for example, when droplets cross each other.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号