首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A method is described for the separation of rhenium from molybdenum and vanadium by extraction with amyl alcohol. The sample solution containing ReVII, MoVI, and VV is boiled with hydrazine sulphate in order to obtain MoV and VIV (Re remains in the heptavalent state). Rhenium is quantitatively extracted into amyl alcohol from this solution, along with very slight amounts of molybdenum and vanadium. After back-extraction, the residual molybdenum is completely removed by extraction of its thiocyanate with amyl acetate. The accompanying vanadium is usually too small to interfere in the thiocyanate method of rhenium estimation. The method is simple, rapid and applicable to all Mo:Re ratios generally met with.
Zusammenfassung Ein Verfahren zur Abtrennung des Rheniums von Molybdän und Vanadium durch Extraktion mit Amylalkohol wird beschrieben. Rhenium soll als ReVII, Molybdän als MoV und Vanadium als VIV vorliegen (MoVI und VV werden mit Hydrazinsulfat reduziert). Geringe Mengen Mo und V werden mitextrahiert. Nach Rückextraktion wird Mo vollständig durch Extraktion des Thiocyanats mit Amylacetat entfernt. Die vorhandenen Vanadiummengen sind zu gering, um die nachfolgende Rheniumbestimmung (nach der Thiocyanatmethode) zu stören. Das Verfahren ist einfach und rasch durchführbar und für alle üblichen Mo:Re-Verhältnisse anwendbar.


Our sincere thanks are due to Prof. S. M. Mukherji, Head of the Chemistry Department, for facilities.  相似文献   

2.
According to the ratio of citric acid to molybdenum different citratomolybdenum(VI) complexes exist at pH <2. Only one citratomolybdenum(VI) complex exists in solutions with a great excess of citric acid (20:1). In such solutions the polarographic reduction of MoVI proceeds in two waves: First MoVI → MV, then MoV → MoIV, which disproportionates into MoV and MoIII however. Furthermore, it is possible that the MoIV reacts with MoVI forming MoV, so that also a catalytic character can be attributed to the second wave besides a kinetic one.  相似文献   

3.
The catalytic mechanism of nitrate reduction by periplasmic nitrate reductases has been investigated using theoretical and computational means. We have found that the nitrate molecule binds to the active site with the Mo ion in the +6 oxidation state. Electron transfer to the active site occurs only in the proton‐electron transfer stage, where the MoV species plays an important role in catalysis. The presence of the sulfur atom in the molybdenum coordination sphere creates a pseudo‐dithiolene ligand that protects it from any direct attack from the solvent. Upon the nitrate binding there is a conformational rearrangement of this ring that allows the direct contact of the nitrate with MoVI ion. This rearrangement is stabilized by the conserved methionines Met141 and Met308. The reduction of nitrate into nitrite occurs in the second step of the mechanism where the two dimethyl‐dithiolene ligands have a key role in spreading the excess of negative charge near the Mo atom to make it available for the chemical reaction. The reaction involves the oxidation of the sulfur atoms and not of the molybdenum as previously suggested. The mechanism involves a molybdenum and sulfur‐based redox chemistry instead of the currently accepted redox chemistry based only on the Mo ion. The second part of the mechanism involves two protonation steps that are promoted by the presence of MoV species. MoVI intermediates might also be present in this stage depending on the availability of protons and electrons. Once the water molecule is generated only the MoVI species allow water molecule dissociation, and, the concomitant enzymatic turnover. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

4.
The preparation of an 8-hydroxyquinoline complex of trivalent gold by the action of oxine upon gold chloride and “monopyridine gold chloride” is described. The absorption spectrum of the complex, which approximated to the composition AuCl2C9H6ON was plotted in the U.V. and visible regions of the spectrum.A partial separation between tri- and tetravalent titanium was obtained using paper chromatography. Absorption curves were obtained for oxine complexes of Ti(III) and Ti(IV) in the visible region of the spectrum.  相似文献   

5.
The mechanism of the molybdenum‐catalyzed deoxydehydration (DODH) of vicinal diols has been investigated using density functional theory. The proposed catalytic cycle involves condensation of the diol with an MoVI oxo complex, oxidative cleavage of the diol resulting in an MoIV complex, and extrusion of the alkene. We have compared the proposed pathway with several alternatives, and the results have been corroborated by comparison with the molybdenum‐catalyzed sulfoxide reduction recently published by Sanz et al. and with experimental observations for the DODH itself. Improved understanding of the mechanism should expedite future optimization of molybdenum‐catalyzed biomass transformations.  相似文献   

6.
New mixed valent molybdenum monophosphates AMo3P2O14 have been synthesized for A = Ag, Rb, Na, Sr. The single crystal X-ray diffraction study of two of them (A = Ag, Sr) shows that they belong to the layer structure type KMo3P2O14. Their structure consists of [Mo3P2O14] layers involving MoO6 octahedra and MoO5 bipyramids, interleaved with A cations forming bicapped trigonal prisms AO8. Bond valence calculations show a localisation of the MoV and MoVI species according to the formula A1MoVoct1MoVIoct2MoVIbipyP2O14 for A = Ag, Na and SrMoVoct1MoVoct2MoVIbipyP2O14. A comparison between the different MoV? MoVI phosphates is made.  相似文献   

7.
Four new molybdenum complexes [MoVIO2(L1)(Him)] ( 1 ), [MoVIO2(L1)(3‐MepzH] ( 2 ), [MoVIO2(L2)(3‐MepzH)] ( 3 ), and [(MoVIO2)2(μ‐L3)(MeOH)2] ( 4 ) were synthesized and characterized by IR, NMR, ESI‐MS, and single‐crystal structure analysis [H2L1 = 2‐(salicylideneamino)‐2‐methyl‐1‐propanol, H2L2 = 2‐(3‐methoxysalicylideneamino)‐2‐methyl‐1‐propanol, H4L3 = 1, 7‐bis(salicylidene)dihydrazide malonic acid, Him = imidazole and 3‐MepzH = 3‐methylpyrazole]. In all four structures the molybdenum atom has a distorted octahedral coordination with the three meridional donor atoms from the Schiff base di‐ or tetraanion (L1, 2)2—/(L3)4— and one oxo group occupying the sites of the equatorial plane. The other oxo group and the azole or methanol molecule occupy the apical sites. In 1—3 two centrosymmetrically related molecules form a hydrogen‐bonded pair through the (azole)N‐H···O(alkoxo) interaction. Additional crystal packing appears to be controlled mostly by π stacking between the aromatic rings of the salicyl moiety. ESI‐MS investigations reveal that the integrity of complexes 1—4 is largely retained in methanol solution. At the same time evidence is provided that di‐ to tetranuclear oligomers of formula [{MoVIO2(L)}x] and [{MoVIO2(L)}x(3‐MepzH)] with L = L1, L2, x = 2, 3, 4 are present simultaneously with 2 and 3 in methanol solution, respectively the tetranuclear species [{(MoVIO2)2(L3)}2] with 4 .  相似文献   

8.
The synthesis, characterization and biological activity of molybdenum(IV) complexes containing Trofimenko's scorpionato ligand, hydrotris(3-isopropylpyrazolyl)borate (TpiPr), in addition to varying biologically active as well as other conventional ligands is described. Ligands employed include (O,O-) (S,O-) (N,N-) donors that have been successfully coordinated to the molybdenum center by means of oxygen-atom transfer (OAT) reactions from the known MoVI starting material, TpiPrMoO2Cl. The synthesized complexes were characterized by standard analytical methods and where possible by X-ray diffraction analysis. The aqueous stability of the compounds was studied by means of UV/Vis spectroscopy and the impact of the attached ligand scaffolds on the oxidation potentials (MoIV to MoV) was studied by cyclic voltammetry. Utilizing polyvinylpyrrolidone (PVP) as a solubilizing agent, adequate aqueous solubility for biological tests was obtained. Anticancer activity tests and preliminary mode of action studies have been performed in vitro and in vivo.  相似文献   

9.
The complex Mo2O4(cys)22? disproportionates nito MoVI and MoIII at a pH higher than 9. Under our experimental conditions, the reduction of acetylene by molybdenum-cystéine complexes does only occur after addition of naBH4·MoIII; the molybdenum(III) species seems to be responsible for this activity.  相似文献   

10.
Synthesis and characterization of four Mo(VI) complexes of a diprotic tridentate ONS chelating ligand (H2L) containing the rather elusive [MoVIOS]2+ core is reported. These [MoVIOSL] complexes are obtained from their corresponding [MoVIO2L] precursors using a combination of PPh3 and PPh3S. This process of oxo-abstraction and sulfido-inclusion affected by PPh3–PPh3S is reported for the first time and may be considered as a general method of converting [MoVIO2L] complexes to the corresponding [MoVIOSL] complexes. Direct structural characterization of these complexes could not be done due to the ease of solvolysis of these oxosulfidomolybdenum(VI) complexes to the corresponding dioxomolybdenum(VI) analogues. However, the structure of these [MoVIOSL] complexes could be reasonably surmised from the corresponding structurally characterized [MoVIO2L] complexes. Points of attachment of the potentially pentadentate but functionally tridentate ONS chelating ligands to [MoVIOS]2+ are located mainly through analysis of IR and UV-Vis spectral data and comparison with corresponding [MoVIO2L] complexes of known structure. Conditions under which solvolysis of [MoVIOS]2+ to the [MoVIO2]2+ core is significantly retarded have been identified and make us hopeful of obtaining single crystals of [MoVIOSL].  相似文献   

11.
This work deals with the generation of large numbers of active sites and with ensuing nucleation/ growth processes on the inside wall of the cavity of porous nanocapsules of the type (pentagon)12(linker)30≡{(MoVI)MoVI5}12{MoV2(ligand)}30. A first example refers to sulfur dioxide capture through displacement of acetate ligands, while the grafted sulfite ligands are able to trap {MoO3H}+ units thereby forming unusual {(O2SO)3MoO3H}5? assemblies. A second example relates to the generation of open coordination sites through release of carbon dioxide upon mild acidification of a carbonate‐type capsule. When the reaction is performed in the presence of heptamolybdate ions, MoO42? ions enter the cavity where they bind to the inside wall while forming new types of polyoxomolybdate architectures, thereby extending the molybdenum oxide skeleton of the capsule. Parallels can be drawn with Mo‐storage proteins and supported MoO3 catalysts, making the results relevant to molybdenum biochemistry and to catalysis.  相似文献   

12.
General conditions for the formation of heterometallic clusters by the simultaneous methanolysis of MoCl5 and MgCl2 were determined. The resultant alkalinity of the reaction solution, the Mg/Mo molar ratio, and the presence of traces of water are key factors responsible for the composition and structure of the mixed magnesium molybdenum methoxides that formed. The new decanuclear mixed-valence MoV,VI Mg oxomethoxide [MoV 4O43-O)22-O)2MoVI 2-O4(OMe)2Mg4(MeOH)63-OMe)62-OMe)8] (1) was synthesized by the reaction of lowernuclearity magnesium molybdenum oxoalkoxide complexes: NaMoV of the complex Na(MeOH)MoV 2O22-OMe)3(OMe)4 (2) and MgMoVI of the complex [MoVIO2Mg(MeOH)2-(OMe)4]2 (3). The molecular structure of 1 was determined by X-ray diffraction.  相似文献   

13.
The asymmetric molybdenum(VI) dioxo complexes of the bis(phenolate) ligands 1,4‐bis(2‐hydroxybenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐4‐methylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐3,5‐dimethylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐3,5‐di‐tert‐butylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐4‐flurobenzyl)‐1,4‐diazepane, and 1,4‐bis(2‐hydroxy‐4‐chlorobenzyl)‐1,4‐diazepane (H2(L1)–H2(L6), respectively) have been isolated and studied as functional models for molybdenum oxotransferase enzymes. These complexes have been characterized as asymmetric complexes of type [MoO2(L)] 1–6 by using NMR spectroscopy, mass spectrometry, elemental analysis, and electrochemical methods. The molecular structures of [MoO2(L)] 1–4 have been successfully determined by single‐crystal X‐ray diffraction analyses, which show them to exhibit a distorted octahedral coordination geometry around molybdenum(VI) in an asymmetrical cis‐β configuration. The Mo? Ooxo bond lengths differ only by ≈0.01 Å. Complexes 1 , 2 , 5 , and 6 exhibit two successive MoVI/MoV (E1/2, ?1.141 to ?1.848 V) and MoV/MoIV (E1/2, ?1.531 to ?2.114 V) redox processes. However, only the MoVI/MoV redox couple was observed for 3 and 4 , suggesting that the subsequent reduction of the molybdenum(V) species is difficult. Complexes 1 , 2 , 5 , and 6 elicit efficient catalytic oxygen‐atom transfer (OAT) from dimethylsulfoxide (DMSO) to PMe3 at 65 °C at a significantly faster rate than the symmetric molybdenum(VI) complexes of the analogous linear bis(phenolate) ligands known so far to exhibit OAT reactions at a higher temperature (130 °C). However, complexes 3 and 4 fail to perform the OAT reaction from DMSO to PMe3 at 65 °C. DFT/B3LYP calculations on the OAT mechanism reveal a strong trans effect.  相似文献   

14.
Summary The differences in kinetic behaviour of the reactions between MoVI and H2O2 in media at different pH are explained by the involvement of different MoVI species. In acidic medium a 6-coordinate MoVI undergoes an H+-independent substitution, while in neutral or alkaline solutions a proton-assisted addition takes place between the 4-coordinate MoVI and H2O2.  相似文献   

15.
Summary Complex reactions between MoV.VI ando-hydroxybenzylamine-N,N,O-triacetic acid (HBATA) have been investigated in the 1–3 and 2.8–6.5 pH range by potentiometric titration at 30° C in 0.5 mol dm–3 NaCl. The equilibrium data were analyzed with the SCOGS2 and MINIQUAD programs, taking into account side reactions of MoV.VI and HBATA with hydrogen ion. The favorable reaction model comprises two complexes, (1,1,1)+ and (1,2,2), with formation constants log 111 = 14.85 ± 0.11 and log 122 = 28.51 ± 0.08 for the MoV-HBATA system and the two complexes (1,1,2)3– and (1,1,3)2– with formation constants log 112 = 17.36 ± 0.01 and log 113 = 20.60 ± 0.01 for the MoVI-HBATA system. The numbers in brackets refer to the chemical stoichiometric coefficients of molybdenum, HBATA and hydrogen ion in the complexes. The structure and coordinating behaviours of MoV and MoVI complexes are discussed. The equilibria studied for the polymerization of MoV indicates that dimeric, trimeric and tetrameric species are present at pH 1–3.  相似文献   

16.
Reactions of WVI and MoV chlorides with azoxybenzene yield ionic species of WVI and MoVI oxychlorides in which the cation is a protonated azobenzene. The reaction between MoCl5 or MoOCl4 and azoxybenzene gives, after extraction with methylene chloride—ethanol mixture, the complex [trans-MoOCl4(OC2H5)]? [C12H10N2H]+. In contrast, WOCl4 reacts with azoxybenzene to give a stable non-ionic adduct in which the organic moiety is coordinated through its oxygen atom trans to the WO bond. Several complexes of substituted azoxybenzene having similar structures are described.  相似文献   

17.
《Solid State Sciences》2004,6(7):689-696
Two interesting neutral tetrasupporting heteropolyoxometalates: [MoVI7MoVVIV8O40(PO4)][M(phen)2(OH)]2[M(phen)2(OEt)]2·xH2O (phen=1,10-phenanthroline, EtOH=ethanol, M=Co, x=7, 1; M=Ni, x=6, 2) were hydrothermally prepared and structurally characterized. The mixed molybdenum–vanadium polyoxoanion [MoVI7MoVVIV8O40(PO4)]4− exist in both two complexes, which acts as a bridge to covalently link two pairs of transition metal complex fragments, generating neutral windmill-like trimetallic nanocluster polyoxometalates. Variable-temperature magnetic susceptibility measurements of complexes 1 and 2 reveal that antiferromagnetic exchange interaction exists in this type of trimetallic tetrasupporting heteropolyoxometalates.  相似文献   

18.
Structure and Catalytic Properties of Molybdenum Oxide Supported Catalysts in Some Oxidation Reactions Molybdenum supported catalysts were prepared by using different precursor compounds such as Mo(π-C3H5)4, [Mo(OC2H5)5]2, MoCl5, (NH4)6Mo7O24, and their catalytic behaviour in some oxidation reactions was studied. During the preparation process, as a result of interaction between the molybdenum compound used and the support, different surface compounds with strongly differing catalytic properties have been formed. MoO3 and supported catalysts with MoO3 crystallites on the surface, catalyse the H2 oxidation at temperatures above 400°C and the CO oxidation at temperatures of about 500°C. The reaction proceeds according to a redox mechanism. On surface compounds of molybdenum which exist on the surface if organic complexes are used as precursors, the catalytic H2 oxidation occurs even at 100°C with a high reaction rate. The catalytic CO oxidation on these catalysts occurs at temperatures of about 300°C. An associative mechanism on coordinative unsaturated MoVI sites is discussed.  相似文献   

19.
Six polyoxometalates containing MnII, MnIII, or FeIII as the heteroelement were synthesized in water by treating MoVI precursors with biologically active bisphosphonates (alendronate (Ale), zoledronate (Zol), an n‐alkyl bisphosphonate (BPC9), an aminoalkyl bisphosphonate (BPC8NH2)) in the presence of additional metal ions. The Pt complex was synthesized from a polyoxomolybdate bisphosphonate precursor with MoVI ions linked by the 2‐pyridyl analogue of alendronate (AlePy). The complexes Mo4Ale2Mn, Mo4Zol2Mn, Mo4Ale2Fe, Mo4Zol2Fe, Mo4(BPC8NH2)2Fe, and Mo4(BPC9)2Fe contain two dinuclear MoVI cores bound to a central heterometallic ion. The oxidation state of manganese was determined by magnetic measurements. Complexes Mo12(AlePy)4 and Mo12(AlePy)4Pt4 were studied by solid‐state NMR spectroscopy and the photochromic properties were investigated in the solid state; both methods confirmed the complexation of Pt. Activity against the human breast adenocarcinoma cell line MCF‐7 was determined and the most potent compound was MnIII‐containing Mo4Zol2Mn (IC50≈1.3 μM ). Unlike results obtained with vanadium‐containing polyoxometalate bisphosphonates, cell growth inhibition was rescued by the addition of geranylgeraniol, which reverses the effects of bisphosphonates on isoprenoid biosynthesis/protein prenylation. The results indicate an important role for both the heterometallic element and the bisphosphonate ligand in the mechanism of action of the most active compounds.  相似文献   

20.
Cells acquire molybdenum and tungsten as their highly soluble oxoanions, MoVIO42? or WVIO42?, which they internalize by means of an active (i.e. energy requiring) transmembrane importer, for subsequent conversion into the metalloenzyme cofactors Moco or Wco (and FeMoco in nitrogen fixers). This import system has been studied as one of the models for the functioning of the protein complex superfamily of ABC (ATP binding cassette) transporters, but its mechanistic details are presently not clear. The complex exhibits interesting variants, known as the microbial Mod, Tup, and Wtp system, and the – less well defined – eukaryotic MOT1 system, which mutually differ in oxoanion coordination chemistry and in the control of intracellular Mo/W levels. This evolutionary diversity of Mo/W transporters has resulted in confusing nomenclature whose rectification is here proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号