首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel finite volume method has been presented to solve the shallow water equations. In addition to the volume‐integrated average (VIA) for each mesh cell, the surface‐integrated average (SIA) is also treated as the model variable and is independently predicted. The numerical reconstruction is conducted based on both the VIA and the SIA. Different approaches are used to update VIA and SIA separately. The SIA is updated by a semi‐Lagrangian scheme in terms of the Riemann invariants of the shallow water equations, while the VIA is computed by a flux‐based finite volume formulation and is thus exactly conserved. Numerical oscillation can be effectively avoided through the use of a non‐oscillatory interpolation function. The numerical formulations for both SIA and VIA moments maintain exactly the balance between the fluxes and the source terms. 1D and 2D numerical formulations are validated with numerical experiments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
We propose a fully conservative high‐order upwind multi‐moment method for the conservation equation. The proposed method is based on a third‐order polynomial interpolation function and semi‐Lagrangian formulation and is a variant of the constrained interpolation profile conservative semi‐Lagrangian scheme with third‐order polynomial function method. The third‐order interpolation function is constructed based on three constraints in the upwind cell (two boundary values and a cell average) and a constraint in the downwind cell (a cell center value). The proposed method shows fourth‐order accuracy in a benchmark problem (sine wave propagation). We also propose a less oscillatory formulation of the proposed method. The less oscillatory formulation can minimize numerical oscillations. These methods were validated through scalar transport problems, and compressible flow problems (shock tube and 2D explosion problems). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A new approach is proposed for constructing a fully explicit third‐order mass‐conservative semi‐Lagrangian scheme for simulating the shallow‐water equations on an equiangular cubed‐sphere grid. State variables are staggered with velocity components stored pointwise at nodal points and mass variables stored as element averages. In order to advance the state variables in time, we first apply an explicit multi‐step time‐stepping scheme to update the velocity components and then use a semi‐Lagrangian advection scheme to update the height field and tracer variables. This procedure is chosen to ensure consistency between dry air mass and tracers, which is particularly important in many atmospheric chemistry applications. The resulting scheme is shown to be competitive with many existing numerical methods on a suite of standard test cases and demonstrates slightly improved performance over other high‐order finite‐volume models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The problem of two‐dimensional tracer advection on the sphere is extremely important in modeling of geophysical fluids and has been tackled using a variety of approaches. A class of popular approaches for tracer advection include ‘incremental remap’ or cell‐integrated semi‐Lagrangian‐type schemes. These schemes achieve high‐order accuracy without the need for multistage integration in time, are capable of large time steps, and tend to be more efficient than other high‐order transport schemes when applied to a large number of tracers over a single velocity field. In this paper, the simplified flux‐form implementation of the Conservative Semi‐LAgrangian Multi‐tracer scheme (CSLAM) is reformulated using quadratic curves to approximate the upstream flux volumes and Gaussian quadrature for integrating the edge flux. The high‐order treatment of edge fluxes is motivated because of poor accuracy of the CSLAM scheme in the presence of strong nonlinear shear, such as one might observe in the midlatitudes near an atmospheric jet. Without the quadratic treatment of upstream edges, we observe at most second‐order accuracy under convergence of grid resolution, which is returned to third‐order accuracy under the improved treatment. A shallow‐water barotropic instability also reveals clear evidence of grid imprinting without the quadratic correction. Consequently, these tests reveal a problem that might arise in tracer transport near nonlinearly sheared regions of the real atmosphere, particularly near cubed‐sphere panel edges. Although CSLAM is used as the foundation for this analysis, the conclusions of this paper are applicable to the general class of incremental remap schemes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we formulate a level set method in the framework of finite elements‐semi‐Lagrangian methods to compute the solution of the incompressible Navier–Stokes equations with free surface. In our formulation, we use a quasi‐monotone semi‐Lagrangian scheme, which is both unconditionally stable and essentially non oscillatory, to compute the advective terms in the Navier–Stokes equations, the transport equation and the equation of the reinitialization stage for the level set function. The method we propose is quite robust and flexible with regard to the mesh and the geometry of the domain, as well as the magnitude of the Reynolds number. We illustrate the performance of the method in several examples, which range from a benchmark problem to test the volume conservation property of the method to the flow past a NACA0012 foil at high Reynolds number. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
This paper is devoted to the development of accurate high‐order interpolating schemes for semi‐Lagrangian advection. The characteristic‐Galerkin formulation is obtained by using a semi‐Lagrangian temporal discretization of the total derivative. The semi‐Lagrangian method requires high‐order interpolators for accuracy. A class of ??1 finite‐element interpolating schemes is developed and two semi‐Lagrangian methods are considered by tracking the feet of the characteristic lines either from the interpolation or from the integration nodes. Numerical stability and analytical results quantifying the amount of artificial viscosity induced by the two methods are presented in the case of the one‐dimensional linear advection equation, based on the modified equation approach. Results of test problems to simulate the linear advection of a cosine hill illustrate the performance of the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we consider edge‐based reconstruction (EBR) schemes for solving the Euler equations on unstructured tetrahedral meshes. These schemes are based on a high‐accuracy quasi‐1D reconstruction of variables on an extended stencil along the edge‐based direction. For an arbitrary tetrahedral mesh, the EBR schemes provide higher accuracy in comparison with most second‐order schemes at rather low computational costs. The EBR schemes are built in the framework of vertex‐centered formulation for the point‐wise values of variables. Here, we prove the high accuracy of EBR schemes for uniform grid‐like meshes, introduce an economical implementation of quasi‐one‐dimensional reconstruction and the resulting new scheme of EBR family, estimate the computational costs, and give new verification results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The r‐ratio is a parameter that measures the local monotonicity, by which a number of high‐resolution and TVD schemes can be formed. A number of r‐ratio formulations for TVD schemes have been presented over the last few decades to solve the transport equation in shallow waters based on the finite volume method (FVM). However, unlike structured meshes, the coordinate directions are not clearly defined on an unstructured mesh; therefore, some r‐ratio formulations have been established by approximating the solute concentration at virtual nodes, which may be estimated from different assumptions. However, some formulations may introduce either oscillation or diffusion behavior within the vertex‐centered (VC) framework. In this paper, a new r‐ratio formulation, applied to an unstructured grid in the VC framework, is proposed and compared with the traditional r‐ratio formulations. Through seven commonly used benchmark tests, it is shown that the newly proposed r‐ratio formulation obtains better results than the traditional ones with less numerical diffusion and spurious oscillation. Moreover, three commonly used TVD schemes—SUPERBEE, MINMOD, and MUSCL—and two high‐order schemes—SOU and QUICK—are implemented and compared using the new r‐ratio formulation. The new r‐ratio formulation is shown to be sufficiently comprehensive to permit the general implementation of a high‐resolution scheme within the VC framework. Finally, the sensitivity test for different grid types demonstrates the good adaptability of this new r‐ratio formulation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A semi‐implicit, semi‐Lagrangian, mixed finite difference–finite volume model for the shallow water equations on a rotating sphere is introduced and discussed. Its main features are the vectorial treatment of the momentum equation and the finite volume approach for the continuity equation. Pressure and Coriolis terms in the momentum equation and velocity in the continuity equation are treated semi‐implicitly. Moreover, a splitting technique is introduced to preserve symmetry of the numerical scheme. An alternative asymmetric scheme (without splitting) is also introduced and the efficiency of both is discussed. The model is shown to be conservative in geopotential height and unconditionally stable for 0.5≤θ≤1. Numerical experiments on two standard test problems confirm the performance of the model. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Time‐splitting technique applied in the context of the semi‐Lagrangian semi‐implicit method allows the use of extended time steps mainly based on physical considerations and reduces the number of numerical operations at each time step such that it is approximately proportional to the number of the points of spatial grid. To control time growth of the additional truncation errors, the standard stabilizing correction method is modified with no penalty for accuracy and efficiency of the algorithm. A linear analysis shows that constructed scheme is stable for time steps up to 2h. Numerical integrations with actual atmospheric fields of pressure and wind confirm computational efficiency, extended stability and accuracy of the proposed scheme. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Numerical oscillation has been an open problem for high‐order numerical methods with increased local degrees of freedom (DOFs). Current strategies mainly follow the limiting projections derived originally for conventional finite volume methods and thus are not able to make full use of the sub‐cell information available in the local high‐order reconstructions. This paper presents a novel algorithm that introduces a nodal value‐based weighted essentially non‐oscillatory limiter for constrained interpolation profile/multi‐moment finite volume method (CIP/MM FVM) (Ii and Xiao, J. Comput. Phys., 222 (2007), 849–871) as an effort to pursue a better suited formulation to implement the limiting projection in schemes with local DOFs. The new scheme, CIP‐CSL‐WENO4 scheme, extends the CIP/MM FVM method by limiting the slope constraint in the interpolation function using the weighted essentially non‐oscillatory (WENO) reconstruction that makes use of the sub‐cell information available from the local DOFs and is built from the point values at the solution points within three neighboring cells, thus resulting a more compact WENO stencil. The proposed WENO limiter matches well the original CIP/MM FVM, which leads to a new scheme of high accuracy, algorithmic simplicity, and computational efficiency. We present the numerical results of benchmark tests for both scalar and Euler conservation laws to manifest the fourth‐order accuracy and oscillation‐suppressing property of the proposed scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
An accurate, efficient and robust numerical method for the solution of the section‐averaged De St. Venant equations of open channel flow is presented and discussed. The method consists in a semi‐implicit, finite‐volume discretization of the continuity equation capable to deal with arbitrary cross‐section geometry and in a semi‐implicit, finite‐difference discretization of the momentum equation. By using a proper semi‐Lagrangian discretization of the momentum equation, a highly efficient scheme that is particularly suitable for subcritical regimes is derived. Accurate solutions are obtained in all regimes, except in presence of strong unsteady shocks as in dam‐break cases. By using a suitable upwind, Eulerian discretization of the same equation, instead, a scheme capable of describing accurately also unsteady shocks can be obtained, although this scheme requires to comply with a more restrictive stability condition. The formulation of the two approaches allows a unified implementation and an easy switch between the two. The code is verified in a wide range of idealized test cases, highlighting its accuracy and efficiency characteristics, especially for long time range simulations of subcritical river flow. Finally, a model validation on field data is presented, concerning simulations of a flooding event of the Adige river. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
This study proposes a new two‐step three‐time level semi‐Lagrangian scheme for calculation of particle trajectories. The scheme is intended to yield accurate determination of the particle departure position, particularly in the presence of significant flow curvature. Experiments were performed both for linear and non‐linear idealized advection problems, with different flow curvatures. Results for simulations with the proposed scheme, and with three other semi‐Lagrangian schemes, and with an Eulerian method are presented. In the linear advection problem the two‐step three‐time level scheme produced smaller root mean square errors and more accurate replication of the angular displacement of a Gaussian hill than the other schemes. In the non‐linear advection experiments the proposed scheme produced, in general, equal or better conservation of domain‐averaged quantities than the other semi‐Lagrangian schemes, especially at large Courant numbers. In idealized frontogenesis simulations the scheme performed equally or better than the other schemes in the representation of sharp gradients in a scalar field. The two‐step three‐time level scheme has some computational overhead as compared with the other three semi‐Lagrangian schemes. Nevertheless, the additional computational effort was shown to be worthwhile, due to the accuracy obtained by the scheme in the experiments with large time steps. The most remarkable feature of the scheme is its robustness, since it performs well both for small and large Courant numbers, in the presence of weak as well strong flow curvatures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Classical semi‐implicit backward Euler/Adams–Bashforth time discretizations of the Navier–Stokes equations induce, for high‐Reynolds number flows, severe restrictions on the time step. Such restrictions can be relaxed by using semi‐Lagrangian schemes essentially based on splitting the full problem into an explicit transport step and an implicit diffusion step. In comparison with the standard characteristics method, the semi‐Lagrangian method has the advantage of being much less CPU time consuming where spectral methods are concerned. This paper is devoted to the comparison of the ‘semi‐implicit’ and ‘semi‐Lagrangian’ approaches, in terms of stability, accuracy and computational efficiency. Numerical results on the advection equation, Burger's equation and finally two‐ and three‐dimensional Navier–Stokes equations, using spectral elements or a collocation method, are provided. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
In the context of High Energy Density Physics and more precisely in the field of laser plasma interaction, Lagrangian schemes are commonly used. The lack of robustness due to strong grid deformations requires the regularization of the mesh through the use of Arbitrary Lagrangian Eulerian methods. Theses methods usually add some diffusion and a loss of precision is observed. We propose to use Adaptive Mesh Refinement (AMR) techniques to reduce this loss of accuracy. This work focuses on the resolution of the anisotropic diffusion operator on Arbitrary Lagrangian Eulerian‐AMR grids. In this paper, we describe a second‐order accurate cell‐centered finite volume method for solving anisotropic diffusion on AMR type grids. The scheme described here is based on local flux approximation which can be derived through the use of a finite difference approximation, leading to the CCLADNS scheme. We present here the 2D and 3D extension of the CCLADNS scheme to AMR meshes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
A simple and efficient numerical method for solving the advection equation on the spherical surface is presented. To overcome the well‐known ‘pole problem’ related to the polar singularity of spherical coordinates, the space discretization is performed on a geodesic grid derived by a uniform triangulation of the sphere; the time discretization uses a semi‐Lagrangian approach. These two choices, efficiently combined in a substepping procedure, allow us to easily determine the departure points of the characteristic lines, avoiding any computationally expensive tree‐search. Moreover, suitable interpolation procedures on such geodesic grid are presented and compared. The performance of the method in terms of accuracy and efficiency is assessed on two standard test cases: solid‐body rotation and a deformation flow. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A moment‐of‐fluid method is presented for computing solutions to incompressible multiphase flows in which the number of materials can be greater than two. In this work, the multimaterial moment‐of‐fluid interface representation technique is applied to simulating surface tension effects at points where three materials meet. The advection terms are solved using a directionally split cell integrated semi‐Lagrangian algorithm, and the projection method is used to evaluate the pressure gradient force term. The underlying computational grid is a dynamic block‐structured adaptive grid. The new method is applied to multiphase problems illustrating contact‐line dynamics, triple junctions, and encapsulation in order to demonstrate its capabilities. Examples are given in two‐dimensional, three‐dimensional axisymmetric (RZ), and three‐dimensional (XYZ) coordinate systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A new family of locally conservative cell‐centred flux‐continuous schemes is presented for solving the porous media general‐tensor pressure equation. A general geometry‐permeability tensor approximation is introduced that is piecewise constant over the subcells of the control volumes and ensures that the local discrete general tensor is elliptic. A family of control‐volume distributed subcell flux‐continuous schemes are defined in terms of the quadrature parametrization q (Multigrid Methods. Birkhauser: Basel, 1993; Proceedings of the 4th European Conference on the Mathematics of Oil Recovery, Norway, June 1994; Comput. Geosci. 1998; 2 :259–290), where the local position of flux continuity defines the quadrature point and each particular scheme. The subcell tensor approximation ensures that a symmetric positive‐definite (SPD) discretization matrix is obtained for the base member (q=1) of the formulation. The physical‐space schemes are shown to be non‐symmetric for general quadrilateral cells. Conditions for discrete ellipticity of the non‐symmetric schemes are derived with respect to the local symmetric part of the tensor. The relationship with the mixed finite element method is given for both the physical‐space and subcell‐space q‐families of schemes. M‐matrix monotonicity conditions for these schemes are summarized. A numerical convergence study of the schemes shows that while the physical‐space schemes are the most accurate, the subcell tensor approximation reduces solution errors when compared with earlier cell‐wise constant tensor schemes and that subcell tensor approximation using the control‐volume face geometry yields the best SPD scheme results. A particular quadrature point is found to improve numerical convergence of the subcell schemes for the cases tested. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
An easy‐to‐use front capturing method is devised by directly solving the transport equation for a volume of fluid (VOF) function. The key to this method is a semi‐Lagrangian conservative scheme, namely CIP_CSL3, recently proposed by the author. In the CIP_CSL3 scheme, the first‐order derivative of the interpolation polynomial at each cell centre is used to control the shape of the reconstructed profile. We show in the present paper that the first‐order derivative, which plays a crucial role in reconstructing the interpolation profile, can also be used to eliminate numerical diffusion. The resulting algorithm can be directly used to compute the VOF‐like function and retain the compact thickness of the moving interface in multi‐fluid simulations. No surface reconstruction based on the value of VOF function is required in the method, which makes it quite economical and easy to use. The presented method has been tested with various interfacial flows including pure rotation, vortex shearing, multi‐vortex deformation and the moving boundaries in real fluid as well. The method gives promising results to all computed problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
The weak Lagrange–Galerkin finite element method for the two‐dimensional shallow water equations on adaptive unstructured grids is presented. The equations are written in conservation form and the domains are discretized using triangular elements. Lagrangian methods integrate the governing equations along the characteristic curves, thus being well suited for resolving the non‐linearities introduced by the advection operator of the fluid dynamics equations. An additional fortuitous consequence of using Lagrangian methods is that the resulting spatial operator is self‐adjoint, thereby justifying the use of a Galerkin formulation; this formulation has been proven to be optimal for such differential operators. The weak Lagrange–Galerkin method automatically takes into account the dilation of the control volume, thereby resulting in a conservative scheme. The use of linear triangular elements permits the construction of accurate (by virtue of the second‐order spatial and temporal accuracies of the scheme) and efficient (by virtue of the less stringent Courant–Friedrich–Lewy (CFL) condition of Lagrangian methods) schemes on adaptive unstructured triangular grids. Lagrangian methods are natural candidates for use with adaptive unstructured grids because the resolution of the grid can be increased without having to decrease the time step in order to satisfy stability. An advancing front adaptive unstructured triangular mesh generator is presented. The highlight of this algorithm is that the weak Lagrange–Galerkin method is used to project the conservation variables from the old mesh onto the newly adapted mesh. In addition, two new schemes for computing the characteristic curves are presented: a composite mid‐point rule and a general family of Runge–Kutta schemes. Results for the two‐dimensional advection equation with and without time‐dependent velocity fields are illustrated to confirm the accuracy of the particle trajectories. Results for the two‐dimensional shallow water equations on a non‐linear soliton wave are presented to illustrate the power and flexibility of this strategy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号