首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper, we report measured Lorentz N2-broadening and N2-induced pressure-shift coefficients of CH3D in the ν2 fundamental band using a multispectrum fitting technique. These measurements were made by analyzing 11 laboratory absorption spectra recorded at 0.0056 cm−1 resolution using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak, Arizona. The spectra were obtained using two absorption cells with path lengths of 10.2 and 25 cm. The total sample pressures ranged from 0.98 to 402.25 Torr with CH3D volume mixing ratios of 0.01 in nitrogen. We have been able to determine the N2 pressure-broadening coefficients of 368 ν2 transitions with quantum numbers as high as J″ = 20 and K = 16, where K″ = K′ ≡ K (for a parallel band). The measured N2-broadening coefficients range from 0.0248 to 0.0742 cm−1 atm−1 at 296 K. All the measured pressure-shifts are negative. The reported N2-induced pressure-shift coefficients vary from about −0.0003 to −0.0094 cm−1 atm−1. We have examined the dependence of the measured broadening and shift parameters on the J″, and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = −J″, J″, and J″ + 1 in the QP-, QQ-, and QR-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.7%. The N2-broadening and pressure-shift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom-atom Lennard-Jones potential. The theoretical results of the broadening coefficients are in good overall agreement with the experimental data (8.7%). The N2-pressure shifts whose vibrational contribution is derived from parameters fitted in the QQ-branch of self-induced shifts of CH3D, are also in reasonable agreement with the scattered experimental data (20% in most cases).  相似文献   

2.
N2-broadening coefficients are measured for 61 transitions of PH3 in the QR branch of the ν2 band and the PP, RP, SP, and PQ branches of the ν4 band, using a tunable diode-laser spectrometer. The recorded lines with J values ranging from 1 to 16 and K from 0 to 11 are located between 1008 and 1106 cm−1. The collisional widths are determined by fitting each spectral line with a Voigt profile, a Rautian profile, and a speed-dependent Rautian profile. The latter models provide larger broadening coefficients than the Voigt model. These coefficients have also been calculated on the basis of a semiclassical model of interacting linear molecules by considering an atom-atom Lennard-Jones potential in addition to the electrostatic contributions. The theoretical results are in good agreement with the experimental data and reproduce the J dependence of the broadenings, but their decrease at high J values is overestimated for the QR (JK) transitions.  相似文献   

3.
Pressure broadening of phosphine lines by helium and argon at room temperature has been experimentally investigated by high-resolution diode-laser spectroscopy. The broadening coefficients are measured for 38 transitions of PH3 in the QR branch of the ν2 band and in the PP and RP branches of the ν4 band. The recorded lines with J values ranging from 3 to 14 and K from 0 to 10 are located between 1062 and 1094 cm−1. The retrieval of the collisional widths is carried out by fitting each spectral line with a Voigt profile, a Rautian profile and a speed-dependent Rautian profile. The latter model provides larger broadening coefficients than the Voigt model. They are also calculated on the basis of a semiclassical model involving the atom-atom Lennard-Jones potential. The theoretical results are in reasonable agreement with the experimental data and reproduce the J and K dependencies of the broadenings.  相似文献   

4.
We report measured Lorentz O2-broadening and O2-induced pressure-shift coefficients of CH3D in the ν2 fundamental band. Using a multispectrum fitting technique we have analyzed 11 laboratory absorption spectra recorded at 0.011 cm−1 resolution using the McMath-Pierce Fourier transform spectrometer, Kitt Peak, Arizona. Two absorption cells with path lengths of 10.2 and 25 cm were used to record the spectra. The total sample pressures ranged from 0.98 to 339.85 Torr with CH3D volume mixing ratios of 0.012 in oxygen. We report measurements for O2 pressure-broadening coefficients of 320 ν2 transitions with quantum numbers as high as J″ = 17 and K = 14, where K″ = K′ ≡ K (for a parallel band). The measured O2-broadening coefficients range from 0.0153 to 0.0645 cm−1 atm−1 at 296 K. All the measured pressure-shifts are negative. The reported O2-induced pressure-shift coefficients vary from about −0.0017 to −0.0068 cm−1 atm−1. We have examined the dependence of the measured broadening and shift parameters on the J″, and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = −J″, J″, and J″ + 1 in the QP-, QQ-, and QR-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%. The O2-broadening and pressure shift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom-atom Lennard-Jones potential. The theoretical results of the broadening coefficients are generally larger than the experimental data. Using for the trajectory model an isotropic Lennard-Jones potential derived from molecular parameters instead of the spherical average of the atom-atom model, a better agreement is obtained with these data, especially for |m| ? 12 values (11.3% for the first calculation and 8.1% for the second calculation). The O2-pressure shifts whose vibrational contribution are either derived from parameters fitted in the QQ-branch of self-induced shifts of CH3D or those obtained from pressure shifts induced by Xe in the ν3 band of CH3D are in reasonable agreement with the scattered experimental data (17.0% for the first calculation and 18.7% for the second calculation).  相似文献   

5.
Using a tunable diode-laser spectrometer, we have measured H2-broadening coefficients of PH3 at low temperature (173.2 K) for 27 lines in the QR branch of the ν2 band and in the PP and RP branches of the ν4 band. The recorded lines with J values ranging from 2 to 11 and K from 0 to 9 are located between 1016 and 1093 cm−1. The collisional widths are determined by fitting each spectral line with a Voigt profile and a speed-dependent Rautian profile which provides slightly larger broadening coefficients than the Voigt model. These coefficients have also been calculated on the basis of a semiclassical model of interacting linear molecules by considering an atom-atom Lennard-Jones potential in addition to the weak electrostatic contributions. Except for three QR(J,K) lines, where K = J, the calculated broadening coefficients are in good agreement with the experimental data. By comparing the results obtained at room and low temperatures, the temperature dependence of linewidths has been determined both theoretically and experimentally.  相似文献   

6.
N2-broadening coefficients have been measured for 41 transitions of PH3 at −100 °C in the QR branch of the ν2 band and the PP, RP, and SP branches of the ν4 band, using a tunable diode-laser spectrometer. The recorded lines with J values ranging from 1 to 13 and K from 0 to 10 are located between 1026 and 1093 cm−1. The collisional widths are determined by fitting each spectral line with a Voigt profile, a Rautian profile, and a speed-dependent Rautian profile. The latter models provide larger broadening coefficients than the Voigt model. These coefficients have also been calculated on the basis of a semiclassical model of interacting linear molecules by considering an atom-atom Lennard-Jones potential in addition to the electrostatic contributions. By comparing broadening coefficients at room and low temperatures, the temperature dependence of these broadenings has been determined both experimentally and theoretically.  相似文献   

7.
Using a tunable diode-laser spectrometer self-broadening coefficients and absolute intensities have been measured for 26 lines of PH3 at 298 K in the QR branch of the ν2 band and the PP and RP branches of the ν4 band. The recorded lines with J values ranging from 2 to 14 and K from 0 to 11 are located in the spectral range 995-1093 cm−1. Self-broadening coefficients have also been measured at 173.4 K for nine of these lines. The collisional widths and line strengths are obtained by fitting each spectral line with different theoretical profiles. The results obtained for the line intensities are in good agreement with recent measurements [J. Mol. Spectrosc. 215 (2002) 178]. The self-broadening coefficients are also calculated on the basis of a simple semiclassical model involving only the electrostatic interactions. A satisfactory agreement is obtained except for high J values or K values equal to J, for which the calculated results are notably underestimated. By comparing broadening coefficients at room and low temperatures, the temperature dependence of these broadenings has been determined both experimentally and theoretically.  相似文献   

8.
We report on linewidth measurements on the J=24K,11−23K,10 and J=38K,33−37K,32 millimeter wave transitions in the ground vibrational state of nitric acid, located near 470.23 and 544.36 GHz, respectively. Experiments were performed with N2 and O2 as perturber molecules, in the 240-350 K temperature range by using a video-type spectrometer. The foreign-gas broadening parameters and their temperature dependence coefficients were determined using the Voigt profile, no narrowing effect being observed. In order to check the reliability of reported values, we carried out measurements on the J=14K,12−13K,11 transition located near 206.6 GHz, previously observed in two other laboratories. For this last line all the reported values are consistent themselves within one claimed standard deviation.  相似文献   

9.
Using a high resolution Raman spectrometer, we have measured Ar-broadening coefficients in the ν2Q branch of C2H2 for 22 lines at 295 K, 20 lines at 174 K, and 16 lines at 134 K. These lines with J values ranging from 1 to 23 are located in the spectral range 1970.9-1974.3 cm−1. The collisional widths are obtained by fitting each spectral line with a Rautian profile. The resulting broadening coefficients are compared with theoretical values arising from close coupling and coupled states calculations. A satisfactory agreement is obtained at room as well as at low temperatures, especially for odd J lines. By comparing broadening coefficients at 295, 174, and 134 K from a simple power law, the temperature dependence of these broadenings has been determined both experimentally, and theoretically.  相似文献   

10.
Nitrogen- and air-broadened Lorentz halfwidths have been determined for 29 lines in the P and R branches of the (ν4 + ν5)0 combination band of 12C2H2 using a tunable diode laser spectrometer. Two tunable diode lasers operating in the region 1250–1380 cm?1 were used in recording the data. For nitrogen broadening, the measured halfwidths at 296 K decrease from about 0.11 cm?1 atm?1 at |m| = 1 to about 0.05 cm?1 atm?1 at |m| = 30, where m = J″ + 1 for R-branch lines, m = ?J″ for P-branch lines, and J″ is the lower state rotational quantum number. On the average, the air-broadened halfwidths are 97% of the N2-broadened halfwidths.  相似文献   

11.
Ground state rotation and quartic distortion constants were obtained for 11B2D6 from the analysis of high resolution (0.05 cm−1) Fourier transform infrared spectra. The bands studied comprised the ν17, ν18 type A, and ν14, ν9 + ν15 type C bands of 11B2H6 and the ν16, ν17, ν18 type A, ν8 type B, and ν14 type C bands of 11B2D6. In the case of 11B2H6, the authors' ground state data were combined with those of Lafferty et al. obtained from a previous study (J. Mol. Spectrosc. 33, 345–367 (1970)) at comparable resolution of the ν16 type A and ν8 type B fundamentals. Information on the ground state rotational energy manifold of 11B2H6 was accumulated up to J = 23, Ka = 18, and of 11B2D6 up to J = 32, Ka = 22. This permitted rather precise determination of the distortion constants ΔJ0, ΔJK0, ΔK0, although δJ0 and δK0 proved to be too small (< 10−7 cm−1) and were constrained to values calculated from the force field. Sets of upper state parameters were determined for all vibrational levels studied. Although these appear to be essentially unperturbed globally, several localized perturbations were observed and identified.  相似文献   

12.
The temperature dependence of pressure broadening of 134 rovibrational transitions of several branches in the ν4 and 2ν2 bands of ammonia perturbed by H2 and N2 has been measured using a high-resolution Fourier transform spectrometer. The temperature range covered during the experiments was between 235 and 296 K. The pressure-broadening linewidths were obtained using the method of multipressure fitting to the measured shapes of the lines. These broadenings were also calculated using a semiclassical model leading to a reasonable agreement with the observations and reproduces well the strong systematic experimental J and K quantum number dependencies. The retrieved values of the linewidths, along with those previously determined from the spectra at room temperature, were used to derive the temperature dependence of both H2 and N2 broadening of NH3 lines. The broadening coefficients were shown to fit closely the well-known exponential law. For both experimental and theoretical results, the temperature exponent n has been obtained. Careful inspection of the experimental values shows that, contrary to the linewidths, the coefficient n is nearly K independent within each J multiplet. Also for a given J it does not seem to exhibit any noticeable variation with the type of rotational transition. On the other hand, the calculated n values exhibit a strong J and K systematic dependencies. n increases with K for a given J, decreases with J for a given K and are independent of the type of rotational transition.  相似文献   

13.
The CO2-broadening coefficients of 24 P- and R-branch transitions in the ν4 + ν5 band of acetylene were measured at room temperature using a diode-laser spectrometer. These lines with J values up to 26, were located in the spectral range 1270 to 1400 cm−1. The collisional broadening coefficients were retrieved by fitting the experimental profiles to the Voigt, Rautian, and Galatry lineshape models. Two experimental values for the narrowing coefficient were determined from the spectra and compared with the theoretical narrowing coefficient. The calculations of these broadenings were also performed in the frame of a semiclassical formalism involving a simple intermolecular potential with an adjustable parameter. The theoretical results are in good agreement with the experimental results and reproduce well the J dependence of the broadening coefficients.  相似文献   

14.
In this paper, we report measured Lorentz self-broadening and self-induced pressure-shift coefficients of 12CH3D in the ν2 fundamental band (ν0 ≈ 2200 cm−1). The multispectrum fitting technique allowed us to analyze simultaneously seven self-broadened absorption spectra. All spectra were recorded at the McMath-Pierce Fourier transform spectrometer of the National Solar Observatory (NSO) on Kitt Peak, AZ with an unapodized resolution of 0.0056 cm−1. Low-pressure (0.98-2.95 Torr) as well as high-pressure (17.5-303 Torr) spectra of 12C-enriched CH3D were recorded at room temperature to determine the pressure-broadening coefficients of 408 ν2 transitions with quantum numbers as high as J″ = 21 and K = 18, where K″ = K′ ≡ K (for a parallel band). The measured self-broadening coefficients range from 0.0349 to 0.0896 cm−1 atm−1 at 296 K. All the measured pressure-shifts are negative. The reported pressure-induced self-shift coefficients vary from about −0.004 to −0.008 cm−1 atm−1. We have examined the dependence of the measured broadening and shift parameters on the J″, and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = −J″, J″, and J″ + 1 in the QP-, QQ-, and QR-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 3.6%. A semiclassical theory based upon the Robert-Bonamy formalism of interacting linear molecules has been used to calculate these self-broadening and self-induced pressure-shift coefficients. In addition to the electrostatic interactions involving the octopole and hexadecapole moments of CH3D, the intermolecular potential includes also an atom-atom Lennard-Jones model. For low K (K ? 3) with |m| ? 8 the theoretical results of the broadening coefficients are in overall good agreement (3.0%) with the experimental data. For transitions with K approaching |m|, they are generally significantly underestimated (8.8%). The theoretical self-induced pressure shifts, whose vibrational contribution is derived from results in the QQ-branch, are generally smaller in magnitude than the experimental data in the QP-, and QR-branches (15.2%).  相似文献   

15.
The high-resolution infrared spectrum of HCF3 was studied in the ν6 fundamental (near 500 cm−1) and in the 2ν6 overtones (near 1000 cm−1) regions. The present study reports on the analysis of the hot bands in the ν6 region, as well as the first observation and assignment of the 2ν62 perpendicular band. Using ν6, 2ν6±2ν6±1 and 2ν62 experimental wavenumbers, accurate coefficients C0 and DK0 of the K-dependent ground-state energy terms were obtained, using the so-called “loop method.” Ground-state energy differences Δ(K,J)=E0(K,J)−E0(K−3,J) were obtained for K=3–30. A least-squares fit of 81 such differences gave the following results (in cm−1): C0=0.1892550(15); DK0=2.779(26) × 10−7.  相似文献   

16.
N2-broadened halfwidths have been measured for 51 absorption lines belonging to the ν3 fundamental band of hydrogen cyanide (1H12C14N) near 3311 cm?1. The data were recorded at room temperature using a Fourier transform spectrometer with a nominal resolution of 0.06 cm?1. A nonlinear least-squares spectral-fitting procedure was used to obtain both line intensities and collision-broadened halfwidths from scans recorded at several different pressures. The N2-broadened halfwidths, determined for all lines with J ≤ 25 in both the P and R branches of the band, show the expected distribution with J for broadening by a nonpolar gas. The halfwidth values range from approximately 0.17 cm?1 atm?1 near the band center to 0.11 cm?1 atm?1 for high-J lines. The band intensity for the ν3 fundamental derived from these measurements is 236.2 ± 9.5 cm?2 atm?1 at 296 K, and empirical coefficients for the vibration-rotation interaction F-factor were also determined.  相似文献   

17.
Using a tunable diode-laser spectrometer, N2-broadening coefficients have been measured for 15 lines in the ν3 band of C32S2 at room and low temperatures (298, 273.2, 248.2, 223.2, and 198.2 K). These lines with J values ranging from 2 to 62 are located in the spectral range 1519-1545 cm−1. The collisional widths are obtained by fitting each measured spectral line with a Voigt and a Rautian lineshape model and for a few lines we also used a Galatry model. From these results, we have determined the n parameter of the temperature dependence of each broadening coefficient. A semiclassical calculation of these broadenings has been performed by considering in addition to the main electrostatic quadrupole-quadrupole interaction an anisotropic dispersion contribution leading to satisfactory results at all temperatures and providing the n temperature dependence parameter in good agreement with the experimental determination.  相似文献   

18.
The Fourier transform infrared spectrum of monoisotopic SC80Se has been investigated in the ν2, ν3, 2ν2, 2ν3, and ν1 regions with a resolution between 3 and 4 × 10−3 cm−1. In addition, the millimeter-wave spectrum has been studied in the region 150 to 320 GHz, and ground and ν2 = 1 excited state transitions have been measured. Ground state constants, B0 = 2043.285 4(4) MHz and D0 = 146.53(5) Hz, have been determined from a merge of millimeter-wave data and ground state combination differences spanning J values up to 77 and 143, respectively. The band centers ν2 = 352.341 075(9) cm−1 and ν3 = 505.480 06(5)cm−1 have been determined. The rovibrational parameters of numerous overtone and combination levels (ν1νl22ν3) = 0200, 0220, 0310, 0330, 0400, 0420, 0002, and 0003 have been obtained from polynomial analyses whose standard deviations ranged from 0.7 to 3.5 × 10−4 cm−1. The 1000 level, νeff 1435.840 cm−1, is anharmonically perturbed by the 0400 level, with an avoided crossing at J = 55, and W12222 = 0.963 09(1) cm−1. Transitions to both the upper (E+) and lower (E) sublevels of the dyad were observed for 1 ≤ J′ ≤ 117 and 4 ≤ J′ ≤ 171, respectively, and the deperturbed wavenumbers ν1 = 1435.542 76(2) and 4ν02 = 1432.725 00(3) cm−1 were derived. Furthermore, a local crossing of the E and 0420 levels involving l-type resonance was observed at J = 91.  相似文献   

19.
The excitation of odd levels of the thulium atom, spontaneous transitions from which terminate at the 4f 13(2 F o)6s6p(3 P o) (7/2, J 2) levels with J 2 = 0, 1, is studied by the method of extended crossing beams. Fifty four excitation cross sections are measured at an excitation electron energy of 50 eV. Seven optical excitation functions are recorded in the electron energy range of 0–200 eV.  相似文献   

20.
The results of a series of measurements on the broadening and shifting of the J = 0 → 1 absorption line of CH3Cl by foreign gases are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号