首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of pyridine‐2,4‐dicarboxylic acid (H2pydc) in the construction of SrII and SrII‐MII (M=Co, Ni, Zn and Cu) coordination polymers is reported. Eight complexes, that is, [Sr(pydc)H2O]n ( 1 ), [MSr(pydc)2(H2O)2]n (M=Co ( 2 ), Ni ( 3 ), Zn ( 4 )), [ZnSr(pydc)2(H2O)7]n?4 nH2O ( 5 ), [SrCu(pydc)2]n ( 6 ), [SrCu(pydc)2(H2O)3]n?2 nH2O ( 7 ), and [Cu3Sr2(pydc)4(Hpydc)2(H2O)2]n ( 8 ), have been synthesized via dexterously choosing the appropriate strontium sources and transition metal salts, and rationally controlling the temperature of the reaction systems. Complexes 1 , 2 ( 3 , 4 ), 6 , and 8 display four types of 3‐D framework structures. Complexes 5 and 7 exhibit a 2‐D network and a 1‐D chain structure, respectively. The 2‐D complex 7 can be reversibly transformed into 3‐D compound 6 through temperature‐induced solvent‐mediated structural transformation. The luminescent property studies indicated that complex 1 shows a strong purple luminescent emission and 4 exhibits a strong violet luminescence emission. The magnetic properties of 2 , 3 , and 8 were also studied. Antiferromagnetic MII???MII interactions were determined for these complexes.  相似文献   

2.
Three Co(II) and Cu(II)-pyridine-2,5-dicarboxylate (pydc) proton transfer compounds with 1,4-butanediamine (ben) and 2,2-dimethylpropane-1,3-diamine (dmpen), trans-(H2ben)[Co(pydc)2(H2O)2]·4H2O (1), trans-(H2dmpen)[Co(pydc)2(H2O)2]·2H2O (2) and (H2ben)2[Cu2(μ-pydc)4(H2O)2] (3) have been synthesized and characterized by the methods of elemental, spectroscopic (IR and UV-Vis), thermal (TG/DTG, DTA) analysis, magnetic measurement and single crystal X-ray diffraction. The crystallographic analysis revealed that the complexes consist of [Co(pydc)2(H2O)2]2− anion, bis(protonated) diamine cation (H2ben for 1 and H2dmpen for 2) and four and two crystal water molecules, respectively. The Co(II) ions are coordinated by two pydc and two aqua ligands. The bis(deprotonated) pydc ligands coordinate to the Co(II) ions through the nitrogen atom of pyridine ring and the oxygen atom of carboxylate group, creating a chelate ring. The distorted octahedral geometries are completed by two trans aqua ligands at axial positions. The molecular structure of the complex 3 consists of dinuclear [Cu2(μ-pydc)4(H2O)2]4− units and bis(protonated) 1,4-butanediammonium cation. In the structure, each Cu(II) ion is coordinated by two nitrogen and two oxygen atoms from two pydc ligands and one oxygen atom from aqua ligand, forming a distorted square pyramidal geometry.  相似文献   

3.
The title complexes, hexaaquacobalt(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Co(H2O)6][Bi2(C7H4NO4)4]·2H2O, (I), and hexaaquanickel(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Ni(H2O)6][Bi2(C7H4NO4)4]·2H2O, (II), are isomorphous and crystallize in the triclinic space group P. The transition metal ions are located on the inversion centre and adopt slightly distorted MO6 (M = Co or Ni) octahedral geometries. Two [Bi(pydc)2] units (pydc is pyridine‐2,6‐dicarboxylate) are linked via bridging carboxylate groups into centrosymmetric [Bi2(pydc)4]2− dianions. The crystal packing reveals that the [M(H2O)6]2+ cations, [Bi2(pydc)4]2− anions and solvent water molecules form multiple hydrogen bonds to generate a supramolecular three‐dimensional network. The formation of secondary Bi...O bonds between adjacent [Bi2(pydc)4]2− dimers provides an additional supramolecular synthon that directs and facilitates the crystal packing of both (I) and (II).  相似文献   

4.
Two tosylated isophthalic ligands, namely, 5‐tosyloxy‐isophthalic acid (H2toip) and 5‐tosylamino‐isophthalic acid (H2taip) were synthesized. Self‐assembly of CuII ions with H2toip and H2taip ligands under different reaction conditions (temperature, solvents, and auxiliary ligands) gave rise to three coordination polymers formulated as [Cu(toip)(py)2]n ( 1 ), [Cu6(toip)6(H2O)6]n · 8n(H2O) ( 2 ), and [Cu6(taip)6(py)4(dmf)2]n · n[(dmf)6(MeOH)2(H2O)2] ( 3 ) (py = pyridine, dmf = dimethylformamide). Compound 1 is a one‐dimensional (1D) coordination polymeric chain. Compounds 2 and 3 are two‐dimensional (2D) coordination networks featuring very similar Kagomé lattices based on the interconnection of paddle‐wheel [Cu2(COO)4] secondary building units (SBUs) and toip2–/taip2– ligands. However, the arrangement of adjacent Kagomé lattices in 2 and 3 are distinct, making them crystallize in different space groups and thereby have different crystal structures.  相似文献   

5.
Tuning reaction temperatures as well as the variation in starting copper salts and solvents led to the formation of a new series of Cu(II) coordination compounds with 2,3-bis(2-pyridyl)pyrazine (dpp): a mononuclear [Cu(acac)(dpp)(NO3)] (1) complex, two dinuclear [Cu2(acac)2(dpp)(NO3)(H2O)]NO3 (2) and [Cu2(Hdpp)2(ox)(Cl)2(H2O)2]Cl2·6(H2O) (4) complexes, and four coordination polymers {[Cu4(dpp)2(ox)(Cl)6]}n (3), {[Cu4(dpp)2(ox)(NO3)6(H2O)2]∙1.2(H2O)}n (5), {[Cu(dpp)(NO3)](NO3)·(H2O)}n (6) and {[Cu(dpp)(SO4)(H2O)2]}n (7), where acac = acetylacetonate, ox2− = oxalate. Remarkably, the treatment of Cu(II) chloride dihydrate with dpp in methanol solution led to an unusual in situ condensation of dpp with acac to produce [Cu2(acdpp)2(Cl)4]·2(MeOH) (8). The structure of 1 consists of neutral, mononuclear [Cu(acac)(dpp)(NO3)] units with acac and dpp acting as bidentate ligands. In 2, the dpp ligand coordinates in a bis-chelating mode to two Cu(II) ions and bridges them into a dimeric entity, whereas an oxalate linker joins [Cu(Hdpp)(Cl)2(H2O)]+ units into a dimer in 4. Compounds 3, 5, 6 and 7 are 1D chain coordination polymers, which incorporate two symmetry independent metal centers and different bridging ligands: Hdpp+ as a protonated cationic or dpp as a neutral chelating ligand and oxalate, Cl anions or sulfate di-anions as bridging ligands. Magnetic studies were performed on samples 1 and 2, and the analysis reveals a very weak magnetic exchange coupling mediated via the dpp ligand.  相似文献   

6.
After the preparation of 1,4-bis(4,5-dihydro-lH-imidazol-2-yl)benzene(bdib), a nitrogen heterocycle with potential coordination manners of both cis- and trans-configuration forms, three complexes, including cis-[Cuz(bdib )2(/L-OCH3)2]Cl2·2MeOH(1), trans-[Cu(bdib)(AcO)2]n(2), and cis-[Ag2(bdib)2](NO3)2.2H20(3), were successfully self-assembled. Complexes 1 and 2 crystallized in the monoclinic system with P21/n space group and complex 3 in the triclinic system with P1 space group.  相似文献   

7.
Two novel rare earth coordination polymers, [La(pydc)2(H2O)][La(pydc)(H2O)2]·H2O (1) and [Sm(pydc)2(H2O)][Sm(pydc)(H2O)2]·H2O (2) (pydc=pyridine-2,6-dicarboxylate) were hydrothermally synthesized and characterized by the elemental analyses, IR spectra and TG analyses. Single crystal X-ray diffractions show that 1 and 2 are isostructural compounds. In the compounds of 1 and 2, the 1D lanthanide helical chains are connected each other by lanthanide binuclear dimer as building blocks to form a novel 3D covalent framework.  相似文献   

8.
An interesting series of nine new copper(II) complexes [Cu2L2(OAc)2]·H2O (1), [CuLNCS]·½H2O (2), [CuLNO3]·½H2O (3), [Cu(HL)Cl2]·H2O (4), [Cu2(HL)2(SO4)2]·4H2O (5), [CuLClO4]·½H2O (6), [CuLBr]·2H2O (7), [CuL2]·H2O (8) and [CuLN3]·CH3OH (9) of 2-benzoylpyridine-N(4)-phenyl semicarbazone (HL) have been synthesized and physico-chemically characterized. The tridentate character of the semicarbazone is inferred from IR spectra. Based on the EPR studies, spin Hamiltonian and bonding parameters have been calculated. The g values, calculated for all the complexes in frozen DMF, indicate the presence of the unpaired electron in the dx2-y2 orbital. The structure of the compound, [Cu2L2(OAc)2] (1a) has been resolved using single crystal X-ray diffraction studies. The crystal structure revealed monoclinic space group P21/n. The coordination geometry about the copper(II) in 1a is distorted square pyramidal with one pyridine nitrogen atom, the imino nitrogen, enolate oxygen and acetate oxygen in the basal plane, an acetate oxygen form adjacent moiety occupies the apical position, serving as a bridge to form a centrosymmetric dimeric structure.  相似文献   

9.
Reactions of metal acetates with 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole (3-abpt) and co-ligands gave rise to four new complexes, namely [Zn2(3-abpt)(beta)(DMF) (H2O)2]n·nH2O (1), [Zn(3-abpt)(ip)]n·3nH2O (2), [Zn(3-abpt)(ip)(H2O)2]n·2nH2O (3), and [Cu2(3-abpt)2(C6H5COO)4(H2O)2]n·2nH2O (4) (ip = isophthalate, beta = 1,2,4,5-benzenetetracarboxylate). Compound 1 is a 3D coordination polymer with uncommon 3,4-connected (62.8)2(62.82.102) network. Compounds 24 are all 1D coordination polymers, which exhibit diversity structures. Compound 2 is a tubular-like chain, 3 is a ring-like network, and 4 is a zigzag chain. Their thermal stabilities and the photoluminescence of 1 have also been investigated.  相似文献   

10.
To investigate the effect of organic anions on coordination frameworks, the complexes [Cd(2, 6‐pydc)(bibix)2(H2O)2]n ( 1 ) and {[Cd4(2, 5‐pydc)4(bibix)4(H2O)4](H2O)8}n ( 2 ) were isolated by the reactions of 1‐{4‐[(1H‐benzoimidazol‐1‐yl)methyl]benzyl}‐1H‐benzoimidazole (bibix) and two distinct pyridyl‐dicarboxylates as organic anions with d10 metal salts. In the resulting structures, bibix adopts different coordination modes affected by the aromatic anions, which have distinct geometric structure and bonding modes. Thus, complex 1 has a 1D chain structure, whereas complex 2 has a 2D architecture. Both complexes 1 and 2 have a strong fluorescence emission, which may be tentatively assigned to metal‐perturbed intraligand interactions.  相似文献   

11.
5-Ferrocenylpyrimidine (FcPM) reacts with dinuclear copper(II) carboxylates ([Cu2(RCOO)4]; R = C6H5, C5H11, CH3) to produce one-dimensional coordination polymers [Cu2(C6H5COO)4(FcPM)]n (1), [Cu2(C5H11COO)4(FcPM)]n · nCH3CN (2), and a discrete tetranuclear complex [Cu2(CH3COO)4(FcPM)2] (3). Compounds 1 and 2 show similar zigzag chain structures, comprising alternate linking of FcPM and dinuclear copper(II) units, whereas the structure of 3 corresponds to the local structural motifs of 1 and 2. Reaction of FcPM with zinc salts (ZnX2; X = NO3, SCN) affords zinc-centered ferrocenyl cluster complexes, [Zn(NO3)2(FcPM)3] (4) and [Zn(SCN)2(FcPM)2] · 0.5H2O (5), with varying M:L ratios. FcPM acts as a bidentate ligand in 1 and 2, and as a monodentate ligand in the others.  相似文献   

12.
The reactions of [MIII(CN)6]3? (M = Cr or Co) with CuII complexes of a tridentate schiff base [Cu(aemp)Cl] or [Cu(aemp)Ac]2 (Haemp = 2-[(2-amino-ethylimino)-methyl]-phenol) give rise to 1D cyanide-bridged bimetallic coordination polymers [Cu4(aemp)4(H2O)2][Cr(CN)6]Cl (1) and [Cu3(aemp)3(H2O)][Co(CN)6]·2H2O·MeOH (2). In complex 1, the six cyanide ligands of the [Cr(CN)6]3? moiety are involved in bridging, while in complex 2 only five cyanide ligands act as bridges to give a neutral chain. Magnetic studies reveal that complex 1 exhibits intermetallic ferromagnetic coupling, with J = 8.2 cm?1.  相似文献   

13.
Four three‐dimensional heterometallic coordination polymers, [Ln2Cu4I3(IN)7(H2O)]n ( 1 , 2 ) and [LnCu3.5I3(IN)3.5(H2O)3]n · nH2O ( 3 , 4 ) [HIN = isonicotinic acid, Ln = Nd ( 1 ), Gd ( 2 ), La ( 3 ), Eu ( 4 )] were hydrothermally synthesized by using lanthanide oxides, isonicotinic acid, copper chloride, and potassium iodide. The different molar ratio of raw materials results in two distinct types of three‐dimensional frameworks of compounds 1 – 4 . The structure of compounds 1 and 2 are constructed by the layer modules of [Ln2(IN)7(H2O)]nn– and Cu4I3 clusters, whereas that of compounds 3 and 4 are built by dimeric Ln2(IN)6(H2O)6 and layered polymeric [Cu7I6]nn+ units.  相似文献   

14.
A metal-organic framework, [Co2(pydc)2(bpy)2] n · 2nH2O (1) (H2pydc = pyridine-3,4-dicarboxylic acid, bpy = 4,4′-bipyridine), was synthesized under hydrothermal conditions. X-ray diffraction experiments reveal that (1) exhibits a chiral 3D metal-organic framework, which represents the rare example of 3D chiral coordination polymers containing two kinds of organic ligands. Temperature-dependent magnetic susceptibility for (1) was also studied. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

15.
Three new heterometallic coordination compounds, namely, [KCu(I3)(L)2(H2O)2]n(1), [KCu(I3)(L)2(H2O)]n(2) and [CuK4(I3)2(L′)4]n(3), were prepared and characterized(HL=5-methylpyrazine-2-carboxylic acid, HL′=p-tolylacetic acid). Structural studies revealed that 1 and 2 exhibit 3D frameworks with rectangular channels occupied by triiodide ions. Both compounds can be symbolized as a 5-connected net with pcu topology. In compound 3, a one-dimensional polyhedral chain is connected by hexanuclear mask like clusters [Cu2K4O8]. These chains are further linked each other via rare(1,1,3,3)-triiodide ion-bridging units to generate a 3D(4,5,6)-connected net with the point symbol of {12}2{4·122}4{46}{48·62}4{49·66}4. It is noteworthy that water-induced reversible dissolution/reorganization processes occur between 1/2 and [Cu(L)2(H2O)]n·3nH2O. The thermal and photoluminescence properties of compounds 1, 2, and 3 were investigated as well.  相似文献   

16.
17.
Reactions of copper(II) sources with 1,2-bis(4-pyridyl)ethane (bpe) yielded metal-organic networks with diverse topologies and dimensionalities. Compounds [Cu(bpe)2(dmf)2]n(ClO4)2n·2ndmf (1·2ndmf), [Cu(bpe)2(dmf)2]n(ClO4)2n·3.5ndmf (2·3.5ndmf), [Cu(bpe)2(NO3)2]n·2nH2O (4·2nH2O) and [Cu2(bpe)(O2CMe)4]n·0.7nH2O (5·0.7nH2O) have been isolated by altering the copper(II) source, the reaction solvent and the crystallization process. Compounds 1·2ndmf and 2·3.5ndmf consist of cationic [Cu(bpe)2(dmf)2]2+ repeating units assembled to 1D and 2D (4,4) networks, respectively, and represent supramolecular isomers due to the conformational isomerism of the bridging bpe molecules. Compound 4·2nH2O consists of neutral mononuclear [Cu(dpe)2(NO3)2] repeating units assembled to inclined interpenetrating (4,4) sheets describing an overall entanglement that is 3D in nature, and compound 5·0.7nH2O consists of neutral dinuclear repeating units assembled to cross-linked 1D chains.  相似文献   

18.
A new [Ca(H2O)6]2+ cations-templated coordination polymer, namely {[Ca(H2O)6][Cu4(btec)2(μ3-OH)2]}n ( 1 , H4btec=1,2,4,5-benzenetetracarboxylic acid), has been prepared via the solvothermal reactions of CuCl2 ? 2H2O, CaCl2, and H4btec. X-ray structural analysis revealed that it features a tetranuclear [Cu4(COO)6(μ3-OH)2] cluster-based 3D anionic framework with (4,8)-connected scu topology that was further balanced by the isolated [Ca(H2O)6]2+ cations. The framework of 1 shows high thermostability under air atmosphere. Moreover, such compound shows high photocatalytic activity for the degradation of methyl blue (MB) with the degradation efficiency of 94.5 %, and the possible photocatalytic mechanism was also clarified.  相似文献   

19.
A systematic investigation of the reactions of Cu(ClO4)2 · 6H2O with maleamic acid (H2L) in the presence of 2,2′-bipyridine (bpy) has been carried out. The chemical and structural identity of the products depends on the solvent, the absence or presence of external hydroxides in the reaction mixture and the molar ratio of the reactants. Various reaction schemes have led to the isolation of the complexes [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 (1), [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 · 2H2O (1 · 2H2O), [Cu(L′′)(bpy)]n · 2nH2O (2 · 2nH2O), [Cu2(L′′)(bpy)2(H2O)2]n(ClO4)2n · 0.5nH2O (3 · 0.5nH2O), [Cu2(L′′)2(bpy)2] · 2MeOH (5 · 2MeOH), [Cu2(L′)2(bpy)2(ClO4)2] (6) and [Cu(ClO4)2(bpy)(MeCN)2] (7b), where L′′2? and L′? are the maleate(?2) and monomethyl maleate(?1) ligands, respectively. The HL? ion has been transformed to L′′2? and L′? in the known compounds 2 · 2nH2O and 6, respectively, via metal ion-assisted processes involving hydrolysis (2 · 2nH2O) and methanolysis (6) of the primary amide group. The reaction that leads to 6 takes place through the formation of the mononuclear complex [Cu(ClO4)2(bpy)(MeOH)2] (7a), whose structure was assigned on the basis of its spectral similarity with the structurally characterized complex 7b. The structures of the cations in 1 and 1 · 2H2O consists of two CuII atoms bridged by the carboxylate groups of the two HL? ligands, each exhibiting the less common η2 coordination mode; a chelating bpy molecule and a H2O ligand complete square pyramidal coordination at each metal centre. The structure of the dinuclear repeating unit in the 1D coordination polymer 3 · 0.5nH2O consists of two CuII atoms bridged by two syn,syn η1:η1:μ2 carboxylate groups belonging to two L′′2? ions; each ligand bridged two neighboring [CuII,II2] units thus promoting the formation of a helical chain. The structure of the dinuclear molecule of complex 5 · 2MeOH consists of two CuII atoms bridged by two η2 carboxylate groups from two L′′2? ligands; the second carboxylate group of each maleate(?2) ligand is monodentately coordinated to CuII, creating a remarkable seven-membered chelating ring. The L′? ion behaves as a carboxylate-type ligand in 6, with the carboxylate group being in the familiar syn,syn η1:η1:μ2 coordination mode; a chelating bpy molecule and a coordinated ClO4? complete five-coordination at each CuII centre. The crystal structures of the complexes are stabilized by various H-bonding patterns. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

20.
We herein report three new coordination polymers generated from Cu(II) carboxylates (mal, 2ac, fum) and conformationally flexible bifunctional IX as building blocks. All the three complexes adopt unique structures in the solid state. The complex [Cu2(mal)2(IX)2(H2O)6]n crystallizes as orthorhombic co-linear rods with space group P2(1) P2(1) P2(1). Each rod is further formed of two tightly intertwined strings. The second polymer [Cu2(ac)4(IX)2]n crystallizes with space group P1 which consists of two sets of intersecting 2D sheets composed of parallel rods which interpenetrate to form a fully interlocked 3D structure. In both these complexes IX coordinates in the anti mode. The third polymer [Cu2(fum)2(IX)2(H2O)2]n possesses a monoclinic crystal system with space group C2/c and crystallizes as 1D straps. Cu–fum–Cu forms the base of the string which is alternatively garlanded by a macrocycle derived from Cu2(IX)2 unit, where IX coordinates in the syn fashion. The present study suggests that the use of a rigid building block with a flexible organic ligand leads to a better prediction of the final structure of the polymeric array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号