首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Online sample concentration of acidic drugs by transient isotachophoresis (t-ITP) with the injection of a base is described in capillary zone electrophoresis (CZE). A positively coated capillary was conditioned with background electrolyte (ammonium acetate at pH 6). A long plug of sample solution (S) prepared in ammonium acetate was then hydrodynamically injected followed by the base (tetrapropylammonium hydroxide). A negative voltage was applied and caused the hydroxide ions from the base to penetrate the S zone and created a pH junction that swept through the S zone. The analytes stack at the junction where the mechanism of focusing was transient ITP with the acetate and hydroxide ions as leading and terminating ions, respectively. The concentrated analytes separated in co-EOF CZE once the hydroxide was exhausted. The base stacking strategy was tested using hypolipidemic, nonsteroidal anti-inflammatory, and diuretic drugs, and afforded 19-37 improvements in peak height.  相似文献   

2.
Online sample concentration or stacking of basic drugs by transient isotachophoresis with the injection of an acid in co-electroosmotic flow capillary zone electrophoresis was studied experimentally and with computer simulation. The acid stacking strategy afforded an order of magnitude improvement in concentration sensitivity for model tricyclic antidepressant and β blocker drugs.  相似文献   

3.
Low levels of peptide drugs in human plasma can be determined employing off-line solid-phase extraction, followed by capillary zone electrophoresis with UV detection. A bioanalytical procedure is presented, using gonadorelin and angiotensin II in human plasma as model compounds. The solid-phase extraction method, based on a weak cation exchange mechanism, is able to remove interfering endogenous components from the plasma sample, extract the model peptides quantitatively, and give a possibility of concentrating the sample at the same time. Transient isotachophoretic conditions were kept to increase the sample loadability by about two orders of magnitude. Up to about 70% of the capillary was filled with the reconstituted extract, whereafter the peptides were selectively concentrated during the first 15 min. Subsequently, the concentrated sample zones were separated under capillary zone electrophoresis conditions, showing the technique's high resolution. For the model cationic peptides (gonadorelin, angiotensin II) good linearity and reproducibility was observed in the 20-100 ng/mL concentration range. A more extensive washing procedure permits quantitation of gonadorelin at the 5 ng/mL level. In comparison with a liquid chromatography analysis, superior mass sensitivity and separation are obtained with the transient isotachophoretic capillary zone electrophoresis method. Moreover, in this case equivalent sensitivity is achieved when it is directly compared with a liquid chromatography method with UV detection, keeping in mind that 60 times more sample is needed for the latter method. A further gain in sensitivity can be obtained when the analysis is combined with native fluorescence detection, as is demonstrated by combining liquid chromatography separation with fluorescence detection.  相似文献   

4.
The principle of an on-line preconcentration method for capillary zone electrophoresis (CZE) named electrokinetic supercharging (EKS), is described and based on computer simulation the preconcentration behavior of the method is discussed. EKS is an electrokinetic injection method with transient isotachophoretic process, is a powerful preconcentration technique for the analysis of dilute samples. After filling the separation capillary with supporting electrolyte, an appropriate amount of a leading electrolyte was filled and the electrokinetic injection was started. After a while, terminating electrolyte was filled subsequently and migration current was applied. This procedure enabled the introduction of a large amount of sample components from a dilute sample without deteriorating separation. Computer simulation of the electrokinetic injection revealed that EKS was effective for the preconcentration of analytes with wide mobility ranges by proper choice of transient isotachophoresis (ITP) system and electroosmotic flow (EOF) should be suppressed to increase injectable amount of analytes under constant voltage mode. A test mixture of rare-earth chlorides was used to demonstrate the uses of EKS-CZE. When a 100 microL sample was used, the low limit of detectable concentration was 0.3 microg/L (1.8 nM for Er), which was comparable or even better than that of ion chromatography and inductively coupled plasma-atomic emission spectrometry (ICP-AES).  相似文献   

5.
CE with indirect UV detection was used for the simultaneous determination of lithium, magnesium, calcium, creatinine, carnitine, and a number of amino acids in human serum. The target analytes, positively charged under acidic electrolyte conditions, were separated with positive separation voltage polarity using 10 mM 4-methylbenzylamine, 4.5 mM citric acid, 25% (v/v) methanol at pH 4.05 as background electrolyte providing optimal separation. When analyzing real samples, however, some peaks were broadened due to essentially destacking conditions. In order to maintain the separation efficiency and also enhance the detection sensitivity, transient isotachophoresis (tITP) sample stacking was applied and yielded theoretical plate numbers in the range from 160,000 (arginine) to 350,000 (creatinine). The limit of detection values with tITP preconcentration were 0.11-0.26 mg L(-1) for metal cations, 1.0 mg L(-1) for creatinine, and 1.3-3.9 mg L(-1) for histidine, lysine, arginine, and ornithine. The method precision for peak areas was from 0.4 to 5.0% relative standard deviation using the matrix sodium as internal standard. The accuracy of the developed tITP-CZE system was verified by consistent results for Li+, Mg2+, Ca2+, and creatinine obtained on analyzing two serum certified reference materials. The only sample preparation required was ultrafiltration and acidification (to release protein-bound alkaline earths), and working ranges for individual analytes corresponded well to clinical concentration ranges.  相似文献   

6.
Tissue level of nitrate and nitrite are established indicators of altered nitric oxide metabolism under various pathological conditions. Determination of these anions in biological samples, in the presence of high chloride concentration, using capillary zone electrophoresis suffers from poor detection sensitivity. Separation conditions providing excellent resolution and submicromolar detection sensitivity of nitrate and nitrite have been developed and validated. Simple sample preparation was applied that maintains nitrite stability in tissue extracts and at the same time allows transient isotachophoresis stacking of the analytes. Nitrate and nitrite concentrations in rat brain and liver tissue samples were determined in control and lipopolysaccharide treated animals.  相似文献   

7.
The separation of 14 lanthanides by capillary zone electrophoresis was studied in the background electrolyte containing hydroxyisobutyric acid as complexing counter-ion and creatinine as a UV absorbing coion for indirect detection of lanthanide zones. A complete separation was achieved in less than 5 min and the applicability of the method for the analysis of real samples was demonstrated.  相似文献   

8.
The relationships between electromigration dispersion (EMD) and on-line isotachophoresis-capillary zone electrophoresis (ITP-CZE) are described for several basic model proteins and interleukin-6 (rhIL-6). During CZE separation of the highly concentrated analyte zones which were generated during the initial ITP step EMD evolves from intrinsic differences in conductivity between the focused ITP zones and the leading electrolyte. Nearly triangular peaks with a sharp front and diffuse rear side were observed. An electromigration dispersion factor (FEMD) was introduced to measure peak asymmetry. EMD of individual peaks was shown to increase with the absolute amount of the respective analyte injected and with analyte mobility. Good linearity was observed when FEMD was plotted against protein mobility (r > 0.95). The slope of the graphs describing this relationship increased with the amount of analyte injected. The influence of EMD on the separation efficiency of neighboring peaks appeared to be less pronounced than expected. Consecutive release from the ITP-stack during transition from ITP to CZE might be an explanation for this observation.  相似文献   

9.
Xu Z  Doi T  Timerbaev AR  Hirokawa T 《Talanta》2008,77(1):278-281
A transient isotachophoresis-capillary electrophoresis (tITP-CE) system for the determination of minor inorganic anions in saliva is described. The complete separation and quantification of bromide, iodide, nitrate, nitrite, and thiocyanate has been achieved with only centrifugation and dilution of the saliva sample. In-line tITP preconcentration conditions, created by introduction of the plugs of 5 mM dithionic acid (leading electrolyte) and 10 mM formic acid (terminating electrolyte) before and after the sample zone, respectively, allowed the limits of direct UV absorption detection (at 200 nm) to be up to 50-fold improved as compared with CE without tITP. As a result, nitrate and thiocyanate were still detectable at 4.6 and 3.8 μg l−1, respectively, in 1000 times diluted saliva. The daily variations of anionic concentrations in saliva samples taken from a smoking health volunteer were discussed based on the results of tITP-CE analysis. It was confirmed that the thiocyanate concentration in saliva noticeably increased after smoking. This is apparently the first report on simultaneous quantification of more than four anionic salivary constituents using CE.  相似文献   

10.
Breadmore MC 《Electrophoresis》2008,29(5):1082-1091
An online technique for stacking based on the generation of a stationary isotachophoretic (sITP) boundary is presented. By balancing the anodic migration of an ITP boundary with a cathodic EOF, a stationary boundary is formed that can be used to indefinitely concentrate analytes according to ITP principles during electrokinetic injection. The ITP boundary is created by using an electrolyte containing a leading ion (chloride) and a suitable terminating ion added to the sample (2-morpholinoethanesulphonic acid, MES). Destacking and separation are achieved simply by replacement of the sample vial with electrolyte. The formation and stabilisation of the sITP boundary were evaluated through computer simulation which revealed that the pH had little impact upon the formation of the sITP boundary, but did govern the position at which it becomes stationary. Simulations also demonstrated that similar results were obtained when the capillary was initially filled with sample/terminator or leader/electrolyte, which was also supported by experimental results. Using 100 mM Cl(-), 200 mM Tris, pH 8.05 as the leader/electrolyte and adding 100 mM MES, 200 mM Tris, pH 8.05 to the sample, the sITP boundary was established after 5 min at -20 kV and was stable for at least 60 min. This provided detection limits for NO(2) (-), NO(3) (-) and SCN(-) of 0.05-0.66 ppb, which are 10,000 times lower than hydrodynamic injection and 10-50 times lower than other stacking approaches used for these inorganic ions.  相似文献   

11.
Ma B  Zhou X  Wang G  Huang H  Dai Z  Qin J  Lin B 《Electrophoresis》2006,27(24):4904-4909
A quartz microchip integrated isotachophoretic (ITP) preconcentration with zone electrophoresis (ZE) separation was fabricated using a novel multi-point pressure method featured in normal temperature and lower pressure during bonding process. ITP followed by subsequential ZE of two flavonoids, quercetin and isorhamnetin on the microchip was performed consecutively on the homemade microfluidic workstation with UV detection, resulting in a decreased detectable concentration of 32-fold, compared to the ZE mode only, and their detection limits decreased down to 0.2 microg/mL and 1.2 microg/mL, respectively.  相似文献   

12.
The luminescence of samples MeSO4V, RE (Me = Mg, Ca, Ba) depends strongly on the nature of the Me ions. The amount of association of the V5+ and RE3+ ions can be estimated from the measured quantum efficiencies.  相似文献   

13.
Analytical capabilities of capillary zone electrophoresis (CZE) with on-line coupled capillary isotachophoresis (ITP) sample pretreatment in the column-coupling capillary electrophoresis equipment to separate and determine enantiomers present in multicomponent ionic matrices were studied. Tryptophan was used as a model analyte in the ITP-capillary zone electrophoresis experiments performed in this context while a 90-component model mixture of UV-light absorbing organic anions and urine served as multicomponent sample matrices. Various working modes in which the on-line coupled capillary isotachophoresis-capillary zone electrophoresis combination in the column-coupling separation system can operate were employed in the anionic regime of the separation with direct injections of the samples. Advantages and limitations of these working modes in the separations of enantiomers present in model and urine matrices were assessed. Experiments with model mixtures of tryptophan enantiomers revealed that the two were resolved in the capillary zone electrophoresis stage with the aid of alpha-cyclodextrin also when their concentration ratio in the sample was 1:200 while the concentration of L(-)-tryptophan was 25 nmol/l. The limits of detection for the enantiomers were at approximately 10 nmol/l (approximately 1.5 ng/ml) concentrations for a 220 nm detection wavelength of the UV detector employed in the capillary zone electrophoresis stage and for a 30 microliters sample load. A high sample load capacity of the on-line coupled capillary isotachophoresis stage was effective in separating the samples corresponding to 3-6 microliters volumes of undiluted urine. The results from the runs with urine samples showed that only the capillary isotachophoresis-capillary zone electrophoresis combination with a post-column on-line coupled capillary isotachophoresis sample clean-up (responsible for a removal of more than 99% of the sample anionic constituents migrating in the on-line coupled capillary isotachophoresis stack and detectable in the capillary zone electrophoresis stage) provided a universal alternative for the detection and quantitation of the model analyte (L(-)-tryptophan).  相似文献   

14.
The fine structure of zero phonon lines in the electronic absorption spectra of lanthanide ion systems is interpreted by an effective spin Hamiltonian model. The splittings of several cm-1 observed for lanthanide ions with interionic separations near 1 nm in elpasolite lattices are attributed to superexchange interactions.  相似文献   

15.
Transient states in the evolution of electrophoretic systems comprising aqueous solutions of weak monovalent acids and bases are simulated. The mathematical model is based on the system of nonstationary partial differential equations, expressing the mass and charge conservation laws while assuming local chemical equilibrium. It was implemented using a high resolution finite-difference algorithm, which correctly predicted the behavior of the concentration, pH and conductivity fields at low computational expense. Both the regular and the irregular modes of separation in capillary zone electrophoresis and isotachophoresis are considered. It is shown that the results of separation, particularly zone order, strongly depend on pH distribution. Simulation data as well as simple analytical assessments may help to predict and correctly interpret the experimental results.  相似文献   

16.
17.
An improved transient isotachophoresis (tITP) procedure for the preconcentration of iodide from highly saline matrices was developed with the objective to quantify iodide in seawater by capillary electrophoresis (CE). The procedure takes advantage of introducing cetyltrimethylammonium chloride into the high-sodium chloride background electrolyte, which due to a specific interaction with iodide amended placement of the analyte at a large distance from the matrix chloride (the latter performed the role of a leading anion). Computer simulation showed that 2-(N-morpholino)ethanesulfonate could be adopted as a suitable terminating ion to enable isotachophoretic focusing at the beginning of the CE run. Under optimized tITP conditions, the sensitivity response of iodide was improved by a factor of 140 over normal CE mode. This allowed for direct UV detection of as low as 0.6 microg/L iodide and made feasible CE analysis of undiluted surface seawater samples where iodide was found at a 30 microg/L level. The applicability of the proposed tITP-CE method could apparently be extended to the determination of other trace seawater anions (e.g., iodate).  相似文献   

18.
19.
Jastrzebska A 《Talanta》2006,69(4):1018-1024
The usefulness of zone capillary electrophoresis (CZE) in combination with isotachophoresis (cITP) as on-line preconcentration technique was examined for analysis of tripolyphosphate (STPP) in meat and meat products. The mean concentrations of STPP in different types of meat products varied from 39 mg P2O5/100 g to 219 mg P2O5/100 g, these values are below the legal requirements. The detection (LOD) and quantification (LOQ) limits for STPP in extracted solutions were 0.80 mg P2O5/dm3 and 2.69 mg P2O5/dm3, respectively. Obtained results were compared with the Kjeldahl method. Accuracy (97.4-98.3%) was determined using recovery assay based on standard additions method. Precision was evaluated by within-day R.S.D. (1.40-2.19%), between-days R.S.D. (3.00-3.82%) and demonstrates the benefit of using this procedure for the routine analysis of STPP in meat and their products. The F-Snedecor test was employed to compare the precision of the used methods and calculated F-test values (4.00, 6.13) were less than the theoretical (6.39).  相似文献   

20.
The present article describes a capillary zone electrophoresis method which relies on a multilayered water-alkali solvent stacking with online ionization to enhance detection of mannose, arabinose, and their oligosaccharides, which are used as the migration profile standards but are also the distinctive structural components of lipoarabinomannan. Lipoarabinomannan is detected in patients having tuberculosis. The capillary electrophoresis method with ionization of the whole saccharides without degradation in alkaline solution inside the capillary is based on the structural deprotonation of the molecules under ultrahigh pH conditions. The validation of the capillary electrophoresis parameters revealed that the 15-fold electrolyte–water-injection plug allowed detection of one-third lower concentrations than detected without online concentration. For the first time, the better detectability was seen especially for highly polymerized, but otherwise poorly ionized, arabinooctaose. The applicability of the method for detecting whole large biological saccharide complexes was confirmed by the glycolipid lipoarabinomannan. For the first time also, the migration of the indestructible lipoarabinomannan was detected together with oligosaccharides used representing the capping units, namely mannose, mannobiose, and mannotriose. The myo-inositol-phosphate-lipid unit was seen to migrate separately from the arabinomannan, since it was hydrolyzed from one lipoarabinomannan product under alkaline conditions in capillary electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号