首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Core-electron binding energy shifts in free and supported clusters are discussed using the Born-Haber formalism. For grounded clusters this approach shows that the shift reflects the decrease in the average atomic cohesive energy of the cluster relative to that of the bulk metal. This shift is closely related to the surface-atom core level shift. For free clusters there is a second term reflecting the unit charge left on the cluster by the emission of the photoelectron. In small clusters this term results in the suppression of conduction electron screening. Clusters supported on amorphous carbon remain charged in the final-state, and are similar to free clusters, but have smaller shifts because the substrate reduces the energy of the final state by forming an image charge. The shift in monolayer islands on metallic substrates is determined largely by the adsorption enthalpy of the adatoms.  相似文献   

2.
Ultraviolet photoemission spectra for ethylene chemisorbed on Ag(110) and benzene on Ag(110) and Ru(001) indicate adsorption with minimal molecular distortions. A survey of the photoemission data for ethylene and benzene similarly adsorbed on transition metals indicate that the relaxation shift in the binding energy of molecular Orbitals not contributing to the chemisorption bond is essentially independent of the metal when obtained using the value of the work function when the surface is saturated with adsorbate. This observation is in agreement with a theoretical analysis where final state image charge screening is the dominant relaxation mechanism. These observations support the choice of the work function of the surface saturated with adsorbate as the approximation of the adsorption site potential.  相似文献   

3.
Angle-resolved UV photoemission spectra were measured for Ar, Kr, Xe, CO, O2 and N2 adsorbed on a Ni(110) surface at 20 K. The different gases were adsorbed also on the Ni(110) surface which had been precovered by mono- and multilayers of the same gases. Upon physisorbing one of these species onto the bare and precovered Ni surface, binding energy shifts up to 3 eV were found. These shifts will be explained by work function changes of the substrate onto which the gas is physisorbed. It will be shown that for the investigated gases the binding energy referred to the vacuum level is an atomic or molecular property which is independent of the substrate, to a first approximation. By physisorption of a known gas the work function of any substrate can be evaluated by UPS. The density of valence states for bulk Ar, Kr and Xe will be discussed. There is evidence that the conduction band can be seen in the secondary electron background of the UP spectra.  相似文献   

4.
The magnitude of photoemission ionization (or binding) energy shifts of adsorbed xenons both on clean metal surfaces and on multilayer systems can possibly be interpreted in terms of final-state effects by use of Born-Haber cycles.  相似文献   

5.
Lead clusters grown in a pulsed arc cluster ion source (PACIS) are soft-landed under UHV conditions on cooled polycrystalline silver targets. VUV-photoelectron spectroscopy with light from the synchrotron BESSY applied to mass-selected clusters on cold (160 K) substrates shows that the Pb 5d core level binding energies depend on cluster size and-only beyond a critical amount of deposited clusters-on the coverage . A decreasing particle size induces a core level shift towards lower binding energy with respect to the bulk value, the maximum shift being –0.33 eV. The same value is achieved by atom deposition and can be explained by a Born-Haber cycle. The limits for small two-dimensional and large three-dimensional clusters will qualitatively be discussed by the same model. Deposition on a warm substrate, however, leads-at least for small systems-to a gradual line shift with .  相似文献   

6.
Theoretical results presented in this paper reflect that the relativistic fine-structure due to the mass-velocity, spin-orbit and Darwin terms is sensitive to the screening strength parameter in an exponential screened Coulomb hydrogen atom, that is sometimes used to model a plasma-embedded atom. With stronger screening the fine-structure correction undergoes a gradual suppression in magnitude, but contributes to the total binding energy in an increasing proportion, indicating that the relativistic contribution to binding may become quite significant in the ultra-low binding regime under large screening strength. In the presence of screening the l-independence of the fine-structure correction as predicted by the Dirac theory progressively disappears, and a departure from the Z4-scaling law of the correction occurs along the H-isoelectronic sequence of ions - both the effects become accentuated with growing screening strength. In conjunction with screening-induced removal of the Coulomb degeneracy of non-relativistic levels, these result in a deformed multiplet structure for the screened Coulomb atom. Received 31 May 1999 and Received in final form 20 September 1999  相似文献   

7.
The K-VV Auger spectrum of carbon monoxide (CO) excited by C 1s photoionization has been investigated with a novel electron-electron coincidence setup. The energy resolution is sufficiently high to resolve the vibrational energy levels of the core-ionized intermediate state and of most dicationic final states in the two-dimensional electron energy map. We demonstrate how the influence of vibrational states on a molecular Auger spectrum can be accessed experimentally without the constraint of averaging over all intermediate state energies.  相似文献   

8.
Submonolayers of rare gases adsorbed on Al(111) have been studied using photoemission techniques. Coverage-dependent core level binding energy shifts and work function changes have been measured; polarizabilities and dipole moments are deduced. Results indicate that adatom spatial distributions for Xe submonolayers adsorbed on Al(111) at 40 K are best described by a random 2-dimensional distribution, and there is negligible charge transfer from the Al substrate onto the Xe adatoms in the photoionization process.  相似文献   

9.
First-principles total energy calculations are performed to investigate the energetics and electronic structures of graphene adsorbed on both an oxygen-terminated SiO2 (0001) surface and a fully hydroxylated SiO2 (0001) surface. We find that there are several stable adsorption sites for graphene on both O-terminated and hydroxylated SiO2 surfaces. The binding energy in the most stable geometry is found to be 15 meV per C atom, indicating a weak interaction between graphene and SiO2 (0001) surfaces. We also find that the graphene adsorbed on SiO2 is a semiconductor irrespective of the adsorption arrangement due to the variation of on-site energy induced by the SiO2 substrate.  相似文献   

10.
The behaviour of lead and iron adsorbed on the W(100) surface has been studied by probe hole field emission microscopy, field desorption, and by measurement of the total energy distribution (TED) of field-emitted electrons. Lead adsorbed at 300 K which reduces the work function of W(100) can be completely removed at 78 K by field desorption below 3.2 V Å?1 and the resulting surface has both the work function and TED, which are characteristic of the clean plane. Condensation at 800 K followed by field desorption, results in a plane surface of work function 4.17 eV and an altered TED. This effect is attributed to the microfacetting, which is observed by LEED. The Swanson peak in the W(100) TED which is removed by submonolayer amounts of lead re-emerges at monolayer coverage when lead adopts the (1 × 1) structure. Such behaviour is consistent with the model proposed by Kar and Soven. A spectral peak observed when lead is adsorbed on the reconstructed W(100) surface is thought to derive from the atomic 1D state. Adsorption of iron on a W(100) surface reduces φ considerably due to dipole formation and efficiently quenches the Swanson peak. Higher coverages introduce other peaks in the TED enhancement curve, and by adopting an energy scale based on the work of Hagstrum, an attempt is made to interpret the observed peaks in terms of the known energy structure of the free iron atom. One of the three spectral peaks is assigned to the 4s2 ground state of the iron atom, and the remaining two peaks are tentatively attributed to atomic p-states. It is concluded that while the excited state structure of the iron atom is too complex to permit complete interpretation of the spectra, this approach offers the hope that, for simpler atoms, such features may be interpreted in this way.  相似文献   

11.
The adsorption properties of CO molecules adsorbed on Rh, Pd, and Ag atoms supported on various sites of the MgO surface have been studied by means of a density functional cluster model approach. The metal atoms are stabilized with different binding energies on the regular and morphological defect sites of the surface. Among others we considered oxide anions, neutral and charged anion vacancies (F centers) located at terraces, steps, edges, and corners. CO is used as a probe molecule to characterize where the metal atoms are located. This is done by analyzing how the metal-CO binding energy and the C-O stretching frequency change as function of the substrate site where the metal atom is bound.  相似文献   

12.
Assuming a fully screened final state (in the metallic case) and using the (Z + 1) approximation and a Born—Haber cycle we calculate the shift in the core level binding energy between the free atom and its metallic state. The agreement with known experimental shifts is shown to be very good. Utilization of the present method can for example give accurate core level binding energies for those free atoms where such data only exist for the metallic phase.  相似文献   

13.
Two fundamental manifestations of Al conduction electron response to Ar atom core hole in the final state of photoemission have been studied in implanted Ar bubbles in Al(111). Ar 2p binding energy and the Doniach-Sunji? asymmetry of the core-level line shape vary systematically as functions of Ar+ implantation energy and number of ions bombarded (fluence). The observations are explained by relating the strength of Al conduction electron screening to the size of the Ar nanobubbles.  相似文献   

14.
We have investigated the electronic and magnetic properties of copper-family-element (CFE) atom adsorbed graphene nanoribbons (GNRs) with zigzag edges using first-principles calculations based on density functional theory. We found that CFE atoms energetically prefer to be adsorbed at the edges of nanoribbons. Charges are transferred between the CFE atom and carbon atoms at the edge, which reduce the local magnetic moment of carbon atoms in the vicinity of adsorption site and change the electronic structure of GNRs. As a result, Cu adsorbed zigzag GNR is a semiconductor with energy band gap of 0.88 eV in beta-spin and energy gap of 0.22 eV in alpha-spin, while Ag adsorbed zigzag GNR and Au adsorbed zigzag GNR are both half-metallic with the energy gaps of 0.68 eV and 0.63 eV in beta-spin, respectively. These results show that CFE atom adsorbed zigzag GNRs can be applied in nanoelectronics and spintronics.  相似文献   

15.
Structures of carbon monoxide layers on the oxygen-modified Mo(1 1 0) and Mo(1 1 2) surfaces have been investigated by means of density-functional (DFT) calculations. It is found that CO molecules adsorb at hollow sites on the O/Mo(1 1 0) surface and nearly atop Mo atoms on the O/Mo(1 1 2) surface. The favorable positions for adsorption are shown to be near protrusions of electron density above the Mo surface atoms. The presence of oxygen on the molybdenum surface significantly reduces the binding energy of the CO molecule with the substrate; on the oxygen-saturated Mo(1 1 0) surface, the adsorption of CO is completely blocked. The calculated local densities of states (LDOS) demonstrate that the O 2s peak for O adsorbed on Mo(1 1 0) surface is at −19 eV (with respect to the Fermi level), while for the oxygen atom of an adsorbed CO molecule the related 3σ molecular orbital gives rise to a peak at −23 eV. This difference stems from the bonding of the O atom either with Mo surface for adsorbed O or with C atom in adsorbed CO, and therefore the position of the O 2s peak in photoemission spectra can serve as a convincing argument in favor of either the presence or absence of the CO dissociation on Mo surfaces.  相似文献   

16.
The results of kinetic MC simulations of the reversible pattern formation during the adsorption of mobile metal atoms on crystalline substrates are discussed. Pattern formation, simulated for submonolayer metal coverage, is characterized in terms of the joint correlation functions for a spatial distribution of adsorbed atoms. A wide range of situations, from the almost irreversible to strongly reversible regimes, is simulated. We demonstrate that the patterns obtained are defined by a key dimensionless parameter: the ratio of the mutual attraction energy between atoms to the substrate temperature. Our ab initio calculations for the nearest Ag-Ag adsorbate atom interaction on an MgO substrate give an attraction energy as large as 1.6 eV, close to that in a free molecule. This is in contrast to the small Ag adhesion and migration energies (0.23 and 0.05 eV, respectively) on a defect-free MgO substrate.  相似文献   

17.
We have performed calculations of adsorption energetics on the graphene surface using the state-of-the-art diffusion quantum Monte Carlo method. Two types of configurations are considered in this work: the adsorption of a single O, F, or H atom on the graphene surface and the H-saturated graphene system (graphane). The adsorption energies are compared with those obtained from density functional theory with various exchange-correlation functionals. The results indicate that the approximate exchange-correlation functionals significantly overestimate the binding of O and F atoms on graphene, although the preferred adsorption sites are consistent. The energy errors are much less for atomic hydrogen adsorbed on the surface. We also find that a single O or H atom on graphene has a higher energy than in the molecular state, while the adsorption of a single F atom is preferred over the gas phase. In addition, the energetics of graphane is reported. The calculated equilibrium lattice constant turns out to be larger than that of graphene, at variance with a recent experimental suggestion.  相似文献   

18.
张理勇  方粮  彭向阳 《物理学报》2015,64(18):187101-187101
基于密度泛函的第一性原理研究了金衬底对单层二硫化钼电子性能的调控作用. 从结合能、能带结构、电子态密度和差分电荷密度四个方面进行了深入研究. 结合能计算确定了硫原子层在界面的排布方式, 并指出这种吸附结构并不稳定. 能带结构分析证实了金衬底与单层二硫化钼形成肖特基接触, 并出现钉扎效应. 电子态密度分析表明金衬底并没有影响硫原子和钼原子之间的共价键, 而是通过调控单层二硫化钼的电子态密度增加其导电率. 差分电荷密度分析表明单层二硫化钼的导电通道可能在界面处产生. 研究结果可对单层二硫化钼晶体管的建模和实验制备提供指导.  相似文献   

19.
Molecular-orbital calculations are performed to elucidate electronic structures and optical properties of lithium clusters in which several K-shell electrons are simultaneously excited to the valence levels. It is shown that relaxation of valence electrons around localized core holes influences the photoabsorption near-edge spectra significantly. The spectra in the excited state are modified from those in the ground state due to the presence of initial core holes. Potential energy surfaces are calculated for core-ionized Li9 z+ clusters, which exhibit bound states for z≤3. The present cluster calculations would serve as prototypical models of laser-excited hollow atom solids with applications to X-ray optics.  相似文献   

20.
We have measured the angular distribution of carbon K-Auger electrons from fixed in space, core-ionized, CO molecules in coincidence with the kinetic energy release of the C+ and O+ fragments. We find a very narrow ejection of Auger electrons in the direction of the oxygen and an oscillatory diffraction pattern. Even for similar electron energies, the angular distribution strongly depends on the symmetry of the final state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号