首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Systematic studies on the polymers chemically grafted onto a solid substrate with various grafting densities are presented based on the self-consistent mean-field theory (SCMFT). The distribution of the grafting points is explicitly included and all the three coordinates of each grafting point are fixed during the calculations. The existence of solvent molecules is also explicitly considered in the model and the case of Θ-solvent is investigated. The structure of the system is derived by solving the SCMFT equations in three-dimensional space. For the cases of low grafting density, the system is highly inhomogeneous and typical mushroom-like structures are derived. On the other hand, when the grafting density is high enough, the system is nearly homogeneous along the substrate and the polymer concentration profile is consistent with the numerical results of one dimensional SCMFT calculations. The crossover between "mushroom" regime and polymer brush is obtained by tuning the grafting density. In addition, in brush limit, while the root-mean-squared thickness of the brush is linearly dependent on the degree of polymerization, its dependency on the grafting density is in general more complicated than a simple power law.  相似文献   

2.
We report the preparation and characterization of poly(N-isopropylacrylamide) (PNIPAAm) polymer brushes exhibiting controlled lateral variations in the patchiness of polymer chains. These gradients were achieved through an atom transfer radical polymerization (ATRP) grafting-from approach utilizing surfaces on which the spatial profile of the initiator density was carefully controlled. Initiator density gradients were formed on Au by first preparing a hexadecanethiol (HDT) density gradient, by reductive desorption using a laterally anisotropic electrochemical gradient. The bare areas in the original HDT gradient were then back-filled with a disulfide initiator, (BrC(CH3)2COO(CH2)11S)2. The initiator coverage was characterized by X-ray photoelectron spectroscopy (XPS). Then, surface-initiated ATRP was utilized to transfer the initiator density gradient into gradients of PNIPAAm chain density. Ellipsometry, surface plasmon resonance (SPR), and atomic force microscopy (AFM) were used to characterize these PNIPAAm density gradients. The defining characteristic of the PNIPAAm gradients is the evolution of the morphology from discontinuous mushroom structures at extremely low grafting densities to heterogeneous patchy structures at intermediate grafting densities. The size of the patchy domains gradually increases, until at a high grafting density region, the morphology evolves to a smoother, presumably more extended, structure.  相似文献   

3.
A novel approach was developed for the synthesis of tethered polymer layers with thickness and grafting density gradients. Poly(glycidyl methacrylate) (PGMA) was employed as a primary anchoring layer to attach the polymer chains to the surface of a silicon wafer. A linear temperature gradient heated stage was used for the generation of a gradual variation in the thickness of the anchoring PGMA film along the substrate. The obtained gradient was translated into the polymerization initiator gradient via the reaction between the epoxy groups of PGMA and the carboxyl functionality of 2-bromo-2-methylpropionic acid (BPA). The attachment of BPA to the surface modified with the monolayer of PGMA was confirmed by X-ray photoelectron spectroscopy experiments. To complete the experimental procedures, surface-initiated atom transfer radical polymerization was performed to synthesize the grafted polymer layers with thickness and surface densities that were varied along the substrate. The grafting density of the samples created in this three-step process ranged from 0.75 +/- 0.05 to 1.5 +/- 0.25 chains/nm(2). It was estimated, from a comparison of the surface densities of the initiator and the attached polymer, that the efficiency of the initiation from the surface was on the order of 5-10% and was dependent upon the surface concentration of the initiator and the time of polymerization.  相似文献   

4.
We report the use of aqueous surface-initiated atom transfer radical polymerization (SI-ATRP) to grow polymer brushes from a "gigaporous" polymeric chromatography support for use as a novel size exclusion chromatography medium. Poly(N,N-dimethylacrylamide) (PDMA) was grown from hydrolyzable surface initiators via SI-ATRP catalyzed by 1,1,4,7,10,10-hexamethyltriethylenetetramine (HMTETA)/CuCl. Grafted polymer was characterized semiquantitatively by ATR-FTIR and also cleaved and quantitatively characterized for mass, molecular weight, and polydispersity via analytical SEC/MALLS. The synthesis provides control over graft density and allows the creation of dense brushes. Incorporation of negative surface charge was found to be crucial for improving the initiation efficiency. As polymer molecular weight and density could be controlled through reaction conditions, the resulting low-polydispersity grafted polymer brush medium is shown to be suitable for use as a customizable size exclusion chromatography medium for investigating the principals of entropic interaction chromatography. All packed media investigated showed size-dependent partitioning of solutes, even for low graft density systems. Increasing the molecular weight of the grafts allowed solutes more access to the volume fraction in the column available for partitioning. Compared to low graft density media, increased graft density caused eluted solute probes to be retained less within the column and allowed for greater size discrimination of probes whose molecular weights were less than 10(4) kDa.  相似文献   

5.
The role of vacuum ultraviolet (VUV) rays contained in the plasma during plasma‐induced graft polymerization in the pores of a porous high‐density polyethylene (HDPE) substrate was investigated through the separation of the VUV rays from the plasma with LiF, CaF2, and quartz filters. Two characteristic phenomena, the effect of the solvent on the grafting rate and the graft polymerization in the pores of the porous substrate, were observed in the VUV‐induced graft polymerization process. These results provided clear evidence that VUV rays in the plasma played an important role in the formation of grafted layers in the pores of the HDPE substrate. The relationship between the penetration depth of the VUV rays and the distribution of the grafted layer inside the substrate was examined. The calculated penetration depth of the VUV rays (and hence the distribution of radicals) and the distribution of the grafted layer were not consistent. However, this inconsistency could be explained by the fact that the effective density of the radicals that could react with the monomer to grow the grafting polymer was very low because of the steric hindrance of the grafted chains. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2068–2074, 2005  相似文献   

6.
Particle monolayer formation at the air–water interface by polymer‐grafted colloidal silica was investigated. Methyl methacrylate (MMA) was polymerized from initiative bromide groups at colloidal silica surface by atom transfer radical polymerization. We obtained polymer‐grafted silica particle (SiO2‐PMMA) with relative narrow polydispersity of PMMA. For the polymer‐grafted particle with high graft density, particle monolayer formation was confirmed by π‐A isotherm measurement and SEM observation. Interparticle distance was controllable by surface pressure. Furthermore, grafted polymer chains were suggested to be fairly extended at the air–water interface. However, for the polymer‐grafted particle with low graft density, monolayer structure on substrate showed aggregation and voids. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2789–2797, 2006  相似文献   

7.
This paper studied the polymerization‐induced phase separation phenomenon (spinodal decomposition) in a model binary polymer solution under a linear spatial temperature gradient for the purpose of fabricating anisotropic polymeric materials by using mathematical modeling and computer simulation. Reaction kinetics were incorporated with the non‐linear Cahn‐Hilliard theory and the Flory‐Huggins free energy expression in the model. Moreover, the slow mode theory and Rouse law were used to account for polymer diffusion. It was found that an anisotropic morphology was obtained when a temperature gradient was imposed along the polymer solution sample. The direction of the structural anisotropy, however, depended significantly on the overall phase separation time. The presence of a temperature gradient along the polymer solution sample generated a spatial variation in polymerization rate, which resulted in a spatial variation of quench depth. Consequently, at a given instant, the phase separation at different locations of the polymer solution was at different stages of spinodal decomposition. The droplet size formed along the polymer solution was therefore dependent on the polymerization rate, the quench depth and the stage of spinodal decomposition. Furthermore, the spatial temperature gradient produced a spatial variation in the process induction time, which contains the polymerization induction time and phase separation induction time. It was also found that the polymerization induction time played a significant role on the spatial variation in the overall process induction time.

  相似文献   


8.
A poly(N-isopropylacrylamide) (PNIPAAm) gradient covalently anchored on a silicon substrate with a linear variation of thickness was fabricated by continuous injection of the reaction mixture (NIPAAm, CuBr and its ligand, methanol, and water) into a glass chamber containing a silicon wafer, whose surface had been homogeneously immobilized with bromoisobutyryl bromide (BIBB). Because of the good control of the surface-initiated atom transfer radical polymerization (SI-ATRP) technique, the thickness of the PNIPAAm brushes was linearly proportional to the polymerization time. As a result, the gradient length and sharpness could be easily controlled by the experimental parameters such as the polymerization time and the injection rate. The as-prepared PNIPAAm gradients were characterized by ellipsometry, water contact angle, and atom force microscopy to detect their alteration of the thickness, surface wettability, and morphology, confirming the gradient structure. X-ray photoelectron spectroscopy confirmed the surface composition of the PNIPAAm. In vitro culture of HepG2 cells was implemented on the gradient surfaces, revealing that the cells could adhere at 37 degrees C and could be detached at 24 degrees C when the gradient thickness was in the range of 20-45 nm. The work thus develops a method to fabricate the stable gradient surface with better quality control, and clarifies in a facile manner the appropriate thickness of the PNIPAAm brushes in terms of cell adhesion and detachment.  相似文献   

9.
A polymer brush containing a diethylamino group as an anion-exchange group was appended onto a polymer substrate by radiation-induced graft polymerization and subsequent chemical modifications. Bovine serum albumin as a chiral ligand for L-tryptophan was bound to the polymer brush at a density ranging from 17 to 150 g BSA/l. For comparison, BSA was adsorbed onto the gel network containing a diethylaminoethyl group. The molar binding ratio of L-tryptophan to BSA on the polymer brush was 1.7-fold higher than that to BSA on the gel network.  相似文献   

10.
Phospholipid polymer, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)], was grafted with polyethylene (PE) membrane using photoinduced polymerization technique to make the membrane resistant to cell adhesion. The water contact angle on the PE membrane grafted with poly(MPC) decreased with an increase in the photopolymerization time. This decrease corresponded to the increase in the amount of poly(MPC) grafted on the PE surface. The same graft polymerization procedure was applied using other hydrophilic monomers, such as acrylamide (AAm), N-vinylpyrrolidone (VPy) and methacryloyl poly(ethylene glycol) (MPEG). These monomers were also polymerized to form grafted chains on the PE membrane, and the grafting was confirmed with X-ray photoelectron spectroscopy. Analysis of amount and distribution of plasma proteins at the plasma-contacting surface of the original and the modified PE membranes were analyzed using immunogold assay. The grafting of poly(MPC) and poly(VPy) on PE membrane reduced the plasma protein adsorption significantly compared with that on the original PE membrane. However, the PE membranes grafted with poly(AAm) or poly(MPEG) did not show any effects on protein adsorption. Platelet adhesion on the original and modified PE membranes from platelet-rich plasma was also examined. A large number of platelets adhered and activated on the original PE membrane. Grafting with poly(AAm) did not suppress platelet adhesion, but grafting with poly(MPC) or poly(VPy) on the PE membrane was effective in preventing platelet adhesion. It is concluded that the introduction of the phosphorylcholine group on the surface could decrease the cell adhesion to substrate polymer.  相似文献   

11.
Ozone-induced graft polymerization was carried out to improve polymer surfaces. The polymers were exposed to ozone and the surface density of peroxides formed was determined by three methods; iodide, DPPH, and peroxidase method. The peroxide production could be readily controlled by the ozone concentration and the ozone exposure time. In addition, it was dependent on the kind of polymer. Further, it seemed probable that the ozone oxidation introduced peroxides not only on the outermost surface but also into a layer deeper from the outermost surface. Such polymeric peroxides were capable of initiating graft polymerization onto PU. All the physical and biological measurements on the grafted surface indicated that ozone-induced graft polymerization has effectively made the PU surface covered with the grafted water-soluble chains, their location being restricted to the film surface region. The interaction of the PU surface with blood components could be greatly reduced by the surface graft polymerization. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Plasma graft onto microporous polypropylene (PP) membranes was studied. PP substrates had 0.45 μ of average pore size and 80 to 150 μ thickness and monomer for graft was N,N-dimethylacrylamide. Even by short exposure to argon and hydrogen plasmas less than 10 s, post graft polymerization was very fast. Grafting layer could be distinguished from relatively less-grafted portion by electron microscopy. However, graft was, more or less, noticed to form over cross-section of substrate. Plasmas were excited by 13.56 MHz radio frequency source and the wattage less than 10 W was usually enough to prevent PP from heat damage. Grafting rate was dependent on plasma-exposure time. For argon plasma at 10 W, 0.1 Torr (13.3 Pa), grafting rate decreased after maximum rate was observed at 10 s exposure. Analysis by electron spin resonance (ESR) revealed that relationship between spin concentration and irradiation time was somewhat different from reported data on polyethylene substrate. Alkyl radicals showing an eight-line-signal on ESR spectra were rapidly converted to peroxy radicals in air at almost 100%-yield. Both kinds of radicals could initiate graft, and alkyl radicals were found more active. Apparent activation energies were estimated to be 14.2 and 7.9 kcal/mol for graft polymerizations initiated by peroxy and alkyl radicals, respectively. Thermal analysis and X-ray diffraction revealed that graft may exist not only inner and outer surfaces but also in bulk region of substrate. For substrates more than 1000% grafted, even crystalline region was destroyed completely. Diffusion or absorption of monomer into bulk may be an important factor to support growth of graft polymer.  相似文献   

13.
Materials of high antibacterial activity based on quaternized poly (2-(dimethylamino ethyl) methacrylate) (pDMAEMA) have been developed. DMAEMA was graft polymerized on silicon nanowire arrays (SiNWAs) by atom transfer radical polymerization (ATRP), and quaternized using benzyl chloride. The graft density on the modified nanowire arrays was much higher than on analogous smooth silicon, leading to higher bacterial adhesion on the nanowire arrays (34.6±0.39×10(6) vs. 5.0±0.15×10(6) cells/cm(2)). Incubation of Escherichia coli on the substrates for 18 h resulted in 95% cell death on the quaternized nanowire material compared to less than 45% on the quaternized smooth silicon. The results suggest that silicon nanowire array modified with quaternized pDMAEMA is a highly effective antibacterial material due to a high density of antibacterial polymer and consequent high bacterial adhesion and killing.  相似文献   

14.
We present a method for fabricating anchored polymers with a gradual variation of grafting densities on solid substrates. The technique for generating such structures comprises (i) formation of a molecular gradient of polymerization initiator on the solid substrate and (ii) polymerization from the substrate-bound initiator centers ("grafting from"). We measure the mushroom-to-brush transition in grafted polyacrylamides and show that the mushroom and brush behavior can be described using existing scaling theories.  相似文献   

15.
To improve the low water wettability of poly(ethylene terephthalate) (PET), graft polymerization of acrylamide (AAm) by UV irradiation was performed onto the surface of a PET film with the simultaneous irradiation method without using a photo sensitizer. The PET film immersed in a 10 wt % deaerated aqueous solution of AAm was found to become highly hydrophilic upon UV irradiation. Optical microscopy on cross sections of grafted films showed that localization of the graft polymerization was restricted to a thin surface region of the film. Both the low concentration of polymer radicals formed by UV irradiation and the monomer penetration limited to the film surface would be responsible for localization of the grafted layer to the film surface region. Pretreatment of the PET film with benzyl alcohol was effective for enhancement of the graft polymerization. Retention of high hydrophilicity of the surface even after rigorous extraction of homopolymer and a comparative study of polymerization without UV irradiation strongly suggested that UV irradiation of the PET film under immersion in the deaerated AAm aqueous solution would lead to formation of the true graft copolymer.  相似文献   

16.
A novel method of producing a poly(ethylene glycol) (PEG)-based gradient matrix that varies gradually in thickness from 0 to 500 A over a distance of 5-20 mm is presented. The gradient matrix is graft copolymerized from a mixture of PEG methacrylates onto organic thin films providing free radical polymerization sites initiated by UV irradiation at 254 nm. The films used as grafting platforms consist of either a spin-coated cycloolefin polymer or a self-assembled monolayer on planar gold. The thickness/irradiation gradient is realized by means of a moving shutter that slowly uncovers the modified gold substrate. The structural and functional characteristics of the gradient matrix are investigated with respect to thickness profile, degree of carboxylation, and subsequent immobilization of two model proteins of different sizes and shapes. These characteristics are studied with ellipsometry and infrared reflection-absorption microscopy using a grazing angle objective. It is revealed that the relatively small carboxylation agent used offers homogeneous activation throughout the gradient, even in the thick areas, whereas the diffusion/interpenetration and subsequent immobilization of large proteins is partially hindered. This is crucial information in biosensor design that can be easily obtained from a gradient experiment on a single sample. Moreover, the partially hindered protein interpenetration, the marginal swelling upon hydration, and the unspecific nature of the graft polymerization suggest a matrix growth mechanism that favors the formation of a bushlike polymer structure with a certain degree of cross linking.  相似文献   

17.
The reversible binding between a planar polymer layer functionalized by ligands and a planar cell surface containing different densities of mobile receptors has been studied by Monte Carlo simulations. Using the acceptance-ratio method, the distance-dependent profiles for the average number of ligands bound to receptors, the total free energy for the polymer layer-cell surface interaction and the interaction force were obtained. Four main design parameters for the polymer layer were considered: the degree of functionalization, chain degree of polymerization, polymer grafting density and the binding energy for the ligand-receptor interaction. We found that an increase in the degree of functionalization or in the absolute energy of ligand-receptor binding results in a larger number of ligands bound to the receptors, lower free energy, and stronger attractive force. Polymer layers composed of shorter chains were found to exhibit a deeper and narrower free energy profile and a larger attractive force, while longer tethers can interact with the cell surface at a larger and broader range of separation distances, in agreement with experimental observations. Our simulation results show that the increase in polymer grafting density from the mushroom to brush regime enhances the ligand availability and results in a stronger attractive force, increases the maximum binding distance, but exhibits a shallower free energy minimum due to the smaller tolerance to compression for polymer layers with high grafting density. We used two measures of the polymer layer binding affinity to the cell surface: the free energy minimum, related to the equilibrium binding constant and the fraction of bound ligands. We found that the polymer layers with a smaller chain length and grafting density, larger degree of functionalization, and larger absolute binding energy exhibit both a larger equilibrium binding constant to the cell surface and a larger average number of bound ligands, except for high binding energies when the maximum level of binding is reached independently of polymer length and grafting density. We showed that high binding specificity can be achieved by the polymer layers with intermediate ligand-receptor binding energies or an intermediate number of ligands, as a larger binding energy or number of ligands ensures a high binding affinity but lacks specificity while a smaller binding energy or number of ligands provides inadequate affinity. We found that the results for polymer layers with different properties follow a similar pattern when both high binding affinity to cells with high receptor density and high binding specificity are considered. As a result, the optimal design of the polymer layers can be achieved by using several different strategies, which are discussed.  相似文献   

18.
《先进技术聚合物》2018,29(2):806-813
Surface‐initiated atom transfer radical polymerization (SI‐ATRP) was used to graft poly(N‐isopropylacrylamide) (PNIPAM) brush layers with a controllable thickness in the 10‐nm range from silicon substrates. The rate of polymerization of N‐isopropylacrylamide was tuned by the [Cu(II)]0/[Cu(I)]0 ratio between the deactivating and activating species. The polymer layer thickness was characterized by atomic force microscopy (AFM) and ellipsometry. PNIPAM layers with a dry thickness between 5.5 and 16 nm were obtained. Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) confirmed that the chemical structure is PNIPAM brushes. Analysis of the AFM data showed that our procedure leads to polymer grafts in the “mushroom‐to‐brush” transition regime.  相似文献   

19.
We report the first ever use of electrochemically mediated atom transfer radical polymerization (eATRP) employing a bipolar electrochemical method for the fabrication of both gradient and patterned polymer brushes. A potential gradient generated on a bipolar electrode allowed the formation of a concentration gradient of a CuI polymerization catalyst through the one‐electron reduction of CuII, resulting in the gradient growth of poly(NIPAM) brushes from an initiator‐modified substrate surface set close to a bipolar electrode. These polymer brushes could be fabricated in three‐dimensional gradient shapes with control over thickness, steepness, and modified area by varying the electrolytic conditions. Moreover, by site‐selective application of potential during bipolar electrolysis, a polymer brush with a circular pattern was successfully formed. Polymerization was achieved using both a polar monomer (NIPAM) and a nonpolar monomer (MMA) with the eATRP system.  相似文献   

20.
The application of surface‐attached, thiol‐ene polymer films for controlling material properties in a gradient fashion across a surface was investigated. Thiol‐ene films were attached to the surface by first depositing a thiol‐terminated self‐assembled monolayer and performing a thiol‐ene photopolymerization reaction on the surface. Property gradients were created either by creating and modifying a gradient in the surface thiol density in the SAM or by changing the polymerization conditions or both. Film thickness was modified across the substrate by changing either the density of the anchoring thiol functional groups or by changing the reaction conditions such as exposure time. Thicker films (1–11 nm) were obtained by polymerizing acrylate polymer brushes from the surface with varying exposure time (0–60 s). The two factors, that is, the surface thiol density and the exposure time, were combined in orthogonal directions to obtain thiol‐ene films with a two‐dimensional thickness gradient with the maximum thickness being 4 nm. Finally, a thiol‐acrylate Michael type addition reaction was used to modify the surface thiol density gradient with the cell‐adhesive ligand, Arg‐Gly‐Asp‐Ser (RGDS), which subsequently yielded a gradient in osteoblast density on the surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7027–7039, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号