首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a simple random walk (dimension one, nearest neighbour jumps) in a quenched random environment. The goal of this work is to provide sufficient conditions, stated in terms of properties of the environment, under which the central limit theorem (CLT) holds for the position of the walk. Verifying these conditions leads to a complete solution of the problem in the case of independent identically distributed environments as well as in the case of uniformly ergodic (and thus also weakly mixing) environments.   相似文献   

2.
We consider a random walk in random environment on a strip, which is transient to the right. The random environment is stationary and ergodic. By the constructed enlarged random environment which was first introduced by Goldsheid (2008), we obtain the large deviations conditioned on the environment (in the quenched case) for the hitting times of the random walk.  相似文献   

3.
A random walk with a branching system in random environments   总被引:1,自引:0,他引:1  
We consider a branching random walk in random environments, where the particles are reproduced as a branching process with a random environment (in time), and move independently as a random walk on Z with a random environment (in locations). We obtain the asymptotic properties on the position of the rightmost particle at time n, revealing a phase transition phenomenon of the system.  相似文献   

4.
We derive a quenched moderate deviations principle for the one-dimensional nearest random walk in random environment, where the environment is assumed to be stationary and ergodic. The approach is based on hitting time decomposition.  相似文献   

5.
For a symmetric homogeneous and irreducible random walk on the d-dimensional integer lattice, which have a finite variance of jumps, we study passage times (taking values in [0,??]) determined by a starting point x, a hitting state y, and a taboo state z. We find the probability that these passage times are finite, and study the distribution tail. In particular, it turns out that, for the above-mentioned random walks on ? d except for a simple random walk on ?, the order of the distribution tail decrease is specified by dimension d only. In contrast, for a simple random walk on ?, the asymptotic properties of hitting times with taboo essentially depend on mutual location of the points x, y, and z. These problems originated in recent study of a branching random walk on ? d with a single source of branching.  相似文献   

6.
We base ourselves on the construction of the two-dimensional random interlacements (Comets et al., 2016) to define the one-dimensional version of the process. For this, we consider simple random walks conditioned on never hitting the origin. We compare this process to the conditional random walk on the ring graph. Our results are the convergence of the vacant set on the ring graph to the vacant set of one-dimensional random interlacements, a central limit theorem for the interlacements’ local time and the convergence in law of the local times of the conditional walk on the ring graph to the interlacements’ local times.  相似文献   

7.
We consider a one-dimensional ballistic random walk evolving in a parametric independent and identically distributed random environment. We study the asymptotic properties of the maximum likelihood estimator of the parameter based on a single observation of the path till the time it reaches a distant site. We prove asymptotic normality for this consistent estimator as the distant site tends to infinity and establish that it achieves the Cramér-Rao bound. We also explore in a simulation setting the numerical behavior of asymptotic confidence regions for the parameter value.  相似文献   

8.
We consider a discrete time random walk in a space-time i.i.d. random environment. We use a martingale approach to show that the walk is diffusive in almost every fixed environment. We improve on existing results by proving an invariance principle and considering environments with an L2 averaged drift. We also state an a.s. invariance principle for random walks in general random environments whose hypothesis requires a subdiffusive bound on the variance of the quenched mean, under an ergodic invariant measure for the environment chain. T. Sepp?l?inen was partially supported by National Science Foundation grant DMS-0402231.  相似文献   

9.
We give a new proof of the central limit theorem for one dimensional symmetric random walk in random environment. The proof is quite elementary and natural. We show the convergence of the generators and from this we conclude the convergence of the process. We also investigate the hydrodynamic limit (HDL) of one dimensional symmetric simple exclusion in random environment and prove stochastic convergence of the scaled density field. The macroscopic behaviour of this field is given by a linear heat equation. The diffusion coefficient is the same as that of the corresponding random walk. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
In this article, we mainly discuss the asymptotic behavior for multi-dimensional continuous-time random walk in random environment with holding times. By constructing a renewal structure and using the point “environment viewed from the particle”, under General Kalikow's Condition, we show the law of large numbers (LLN) and central limit theorem (CLT) for the escape speed of random walk.  相似文献   

11.
We consider a random walk in a random potential on a square lattice of arbitrary dimension. The potential is a function of an ergodic environment and steps of the walk. The potential is subject to a moment assumption whose strictness is tied to the mixing of the environment, the best case being the i.i.d. environment. We prove that the infinite volume quenched point-to-point free energy exists and has a variational formula in terms of entropy. We establish regularity properties of the point-to-point free energy, and link it to the infinite volume point-to-line free energy and quenched large deviations of the walk. One corollary is a quenched large deviation principle for random walk in an ergodic random environment, with a continuous rate function.  相似文献   

12.
In this paper we study the existence of an asymptotic direction for random walks in random i.i.d. environments (RWRE). We prove that if the set of directions where the walk is transient contains a non-empty open set, the walk admits an asymptotic direction. The main tool to obtain this result is the construction of a renewal structure with cones. We also prove that RWRE admits at most two opposite asymptotic directions.  相似文献   

13.
14.
In this paper we study the distribution of hitting times for a class of random dynamical systems. We prove that for invariant measures with super-polynomial decay of correlations hitting times to dynamically defined cylinders satisfy exponential distribution. Similar results are obtained for random expanding maps. We emphasize that what we establish is a quenched exponential law for hitting times.  相似文献   

15.
We study models of continuous time, symmetric, ℤd-valued random walks in random environments. One of our aims is to derive estimates on the decay of transition probabilities in a case where a uniform ellipticity assumption is absent. We consider the case of independent conductances with a polynomial tail near 0 and obtain precise asymptotics for the annealed return probability and convergence times for the random walk confined to a finite box.  相似文献   

16.
 In the study of large deviations for random walks in random environment, a key distinction has emerged between quenched asymptotics, conditional on the environment, and annealed asymptotics, obtained from averaging over environments. In this paper we consider a simple random walk {X n } on a Galton–Watson tree T, i.e., on the family tree arising from a supercritical branching process. Denote by |X n | the distance between the node X n and the root of T. Our main result is the almost sure equality of the large deviation rate function for |X n |/n under the “quenched measure” (conditional upon T), and the rate function for the same ratio under the “annealed measure” (averaging on T according to the Galton–Watson distribution). This equality hinges on a concentration of measure phenomenon for the momentum of the walk. (The momentum at level n, for a specific tree T, is the average, over random walk paths, of the forward drift at the hitting point of that level). This concentration, or certainty, is a consequence of the uncertainty in the location of the hitting point. We also obtain similar results when {X n } is a λ-biased walk on a Galton–Watson tree, even though in that case there is no known formula for the asymptotic speed. Our arguments rely at several points on a “ubiquity” lemma for Galton–Watson trees, due to Grimmett and Kesten (1984). Received: 15 November 2000 / Revised version: 27 February 2001 / Published online: 19 December 2001  相似文献   

17.
We discuss the quenched tail estimates for the random walk in random scenery. The random walk is the symmetric nearest neighbor walk and the random scenery is assumed to be independent and identically distributed, non-negative, and has a power law tail. We identify the long time asymptotics of the upper deviation probability of the random walk in quenched random scenery, depending on the tail of scenery distribution and the amount of the deviation. The result is in turn applied to the tail estimates for a random walk in random conductance which has a layered structure.  相似文献   

18.
We construct a sequence of transient random walks in random environments and prove that by proper scaling, it converges to a diffusion process with drifted Brownian potential. To this end, we prove a counterpart of convergence for transient random walk in non-random environment, which is interesting itself.  相似文献   

19.
We consider a d-dimensional random walk in random environment for which transition probabilities at each site are either neutral or present an effective drift “pointing to the right”. We obtain large deviation estimates on the probability that the walk moves in a too slow ballistic fashion, both under the annealed and quenched measures. These estimates underline the key role of large neutral pockets of the medium in the occurrence of slowdowns of the walk. Received: 12 March 1998 / Revised version: 19 February 1999  相似文献   

20.
We consider a discrete time random environment. We state that when the random walk on real number space in a environment is i.i.d., under the law, the law of large numbers, iterated law and CLT of the process are correct space-time random marginal annealed Using a martingale approach, we also state an a.s. invariance principle for random walks in general random environment whose hypothesis requires a subdiffusive bound on the variance of the quenched mean, under an ergodic invariant measure for the environment chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号