首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The photophysical properties of a group of Ni(II)-centered tetrapyrroles have been investigated by ultrafast transient absorption spectrometry and DFT/TDDFT methods in order to characterize the impacts of alpha-octabutoxy substitution and benzoannulation on the deactivation pathways of the S1(pi,pi*) state. The compounds examined were NiPc, NiNc, NiPc(OBu)8, and NiNc(OBu)8, where Pc = phthalocyanine and Nc = naphthalocyanine. It was found that the S1(pi,pi*) state of NiNc(OBu)8 deactivated within the time resolution of the instrument (200 fs) to a vibrationally hot T1(pi,pi*) state. The quasidegeneracy of the S1(pi,pi*) and 3(dz2,dx2-y2) states allowed for fast intersystem crossing (ISC) to occur. After vibrational relaxation (ca. 2.5 ps), the T1(pi,pi*) converted rapidly (ca. 19 ps lifetime) and reversibly into the 3LMCT(pi,dx2-y2) state. The equilibrium state, so generated, decayed to the ground state with a lifetime of ca. 500 ps. Peripheral substitution of the Pc ring significantly modified the photodeactivation mechanism of the S1(pi,pi*) by inducing substantial changes in the relative energies of the S1(pi,pi*), 3(dpi,dx2-y2), 3(dz2,dx2-y2), T1(pi,pi*), and 1,3LMCT(pi,dx2-y2) excited states. The location of the Gouterman LUMOs and the unoccupied metal level (dx2-y2) with respect to the HOMO is crucial for the actual position of these states. In NiPc, the S1(pi,pi*) state underwent ultrafast (200 fs) ISC into a hot (d,d) state. Vibrational cooling (ca. 20 ps lifetime) resulted in a cold (dz2,dx2-y2) state, which repopulated the ground state with a 300 ps lifetime. In NiPc(OBu)8, the S1(pi,pi*) state deactivated through the 3(dz2,dx2-y2), which in turn converted to the 3LMCT(pi,dx2-y2) state, which finally repopulated the ground state with a lifetime of 640 ps. Insufficient solubility of NiNc in noncoordinating solvents prevented transient absorption data from being obtained for this compound. However, the TDDFT calculations were used to make speculations about the photoproperties.  相似文献   

2.
The structural, optical, and photophysical properties of 1,4,8,11,15,18,22,25-octabutoxyphthalocyaninato-palladium(II), PdPc(OBu)(8), and the newly synthesized platinum analogue PtPc(OBu)(8) are investigated combining X-ray crystallography, static and transient absorption spectroscopy, and relativistic zeroth-order regular approximation (ZORA) Density Functional Theory (DFT)/Time Dependent DFT (TDDFT) calculations where spin-orbit coupling (SOC) effects are explicitly considered. The results are compared to those previously reported for NiPc(OBu)(8) (J. Phys. Chem. A 2005, 109, 2078) in an effort to highlight the effect of the central metal on the structural and photophysical properties of the group 10 transition metal octabutoxyphthalocyanines. Different from the nickel analogue, PdPc(OBu)(8) and PtPc(OBu)(8) show a modest and irregular saddling distortion of the macrocycle, but share with the first member of the group similar UV-vis spectra, with the deep red and intense Q-band absorption experiencing a blue shift down the group, as observed in virtually all tetrapyrrolic complexes of this triad. The blue shift of the Q-band along the MPc(OBu)(8) (M = Ni, Pd, Pt) series is interpreted on the basis of the metal-induced electronic structure changes. Besides the intense deep red absorption, the title complexes exhibit a distinct near-infrared (NIR) absorption due to a transition to the double-group 1E (π,π*) state, which is dominated by the lowest single-group (3)E (π,π*) state. Unlike NiPc(OBu)(8), which is nonluminescent, PdPc(OBu)(8) and PtPc(OBu)(8) show both deep red fluorescence emission and NIR phosphorescence emission. Transient absorption experiments and relativistic spin-orbit TDDFT calculations consistently indicate that fluorescence and phosphorescence emissions occur from the S(1)(π,π*) and T(1)(π,π*) states, respectively, the latter being directly populated from the former, and the triplet state decays directly to the S(0) surface (the triplet lifetime in deaerated benzene solution was 3.04 μs for Pd and 0.55 μs for Pt). Owing to their triplet properties, PdPc(OBu)(8) and PtPc(OBu)(8) have potential for use in photodynamic therapy (PDT) and are potential candidates for NIR light emitting diodes or NIR emitting probes.  相似文献   

3.
Hydrogen bonds from water to excited-state formaldehyde and from water to excited-state pyridine have been shown to display novel motifs to traditional hydrogen bonds involving ground states, with, in particular for H2O:pyridine, strong interactions involving the electron-rich pi cloud dominating the (n,pi) excited state. We investigate H2O:pyrimidine and various dihydrated species and reveal another motif, one in which the hydrogen bonding can dramatically alter the electronic structure of the excited state. Such effects are rare for ground-state interactions for which hydrogen bonding usually acts to merely perturb the electronic structure of the participating molecules. It arises as the (n,pi*) excitation of isolated pyrimidine is delocalized over both nitrogens but asymmetric hydrogen bonding causes it to localize on just the noninteracting atom. As a result, the excited-state hydrogen bond in H2O:pyrimidine is suprisingly very similar to the ground-state structure. These results lead to an improved understanding of the spectroscopy of pyrimidine in liquid water, and to the prediction that stable excited-state hydrogen bonds in H2O:pyrimidine should be observable, despite failure of experiments to actually do so. They also provide a simple model for the intricate control over primary charge separation in photosynthesis exerted by hydrogen bonding, and for solvent-induced electron localization in symmetric mixed-valence complexes. All conclusions are based on strong parallels found between the results of calculations performed using density-functional theory (DFT) and time-dependent DFT (TDDFT), complete-active-space self-consistent-field (CASSCF) with second-order perturbation-theory correction (CASPT2) theory, and equation-of-motion coupled cluster (EOM-CCSD) theory, calculations that are verified through detailed comparison of computed properties with experimental data for both the isolated molecules and the ground-state hydrogen bond.  相似文献   

4.
The ground- and excited-state properties of a Ni(II) porphyrin bearing peripheral alkylthio group, NiOMTP (OMTP = 2,3,7,8,12,13,17,18-octakis methylthio porphyrinate) have been investigated by steady-state and time-resolved absorption spectrometry and DFT/TDDFT theoretical methods. Several conformations corresponding to different deformations of the porphyrin core and to different orientations of the alkylthio groups have been theoretically explored. The nearly degenerate, purely ruffled D(2d) and hybrid (ruffled with a modest degree of saddling) D(2) conformations, both characterized by an up-down (ud) orientation of the vicinal methylthio groups are by far the preferred conformations in the "gas phase". In contrast to NiOEP, it is the orientation of the peripheral substituents rather than the type and degree of distortions of the porphyrin core that determines the stability of the NiOMTP conformers. The ground-state electronic absorption spectra of NiOMTP exhibit significant changes compared to its parent NiP and beta-alkylated analogues, such as NiOEP, resulting in a considerable red shift of the B and the Q bands, intensification and broadening of the Q band, and additional weak absorptions in the region between the Q and B bands. These spectral changes can be understood in terms of the electronic effects of the methylthio groups with nonplanar distortions of the porphyrin ring playing a very minor role. Transient absorption measurements with sub-picosecond resolution performed in toluene and TDDFT calculations reveal that following photoexcitation, NiOMTP deactivates by the pathway 1(pi,pi) --> 3(d(z2),d(x2-y2))--> ground state. The (d,d) state exhibits complex spectral evolution over ca. 8 ps, interpreted in terms of vibrational relaxation and cooling. The cold ligand-field excited state decays with a lifetime of 320 ps. At variance with the highly distorted nickel porphyrins but similar to the planar analogues, the (d,d) spectrum of NiOMTP has transient absorption bands immediately to the red of the bleaching of the ground-state Q and B bands.  相似文献   

5.
The excited-state dynamics of adenine and thymine dimers and the adenine-thymine base pair were investigated by femtosecond pump-probe ionization spectroscopy with excitation wavelengths of 250-272 nm. The base pairs showed a characteristic ultrafast decay of the initially excited pi pi* state to an n pi* state (lifetime tau(pi pi*) approximately 100 fs) followed by a slower decay of the latter with tau(n pi*) approximately 0.9 ps for (adenine)2, tau(n pi*) = 6-9 ps for (thymine)2, and tau(n pi*) approximately 2.4 ps for the adenine-thymine base pair. In the adenine dimer, a competing decay of the pi pi* state via the pi sigma* state greatly suppressed the n pi* state signals. Similarities of the excited-state decay parameters in the isolated bases and the base pairs suggest an intramonomer relaxation mechanism in the base pairs.  相似文献   

6.
Reported herein is a combination of experimental and DFT/TDDFT theoretical investigations of the ground and excited states of 1,4,8,11,15,18,22,25-Octabutoxyphthalocyaninato-nickel(II), NiPc(BuO)(8), and the dynamics of its deactivation after excitation into the S(1)(pi,pi) state in toluene solution. According to X-ray crystallographic analysis NiPc(BuO)(8) has a highly saddled structure in the solid state. However, DFT studies suggest that in solution the complex is likely to flap from one D(2)(d)-saddled conformation to the opposite one through a D(4)(h)-planar structure. The spectral and kinetic changes for the complex in toluene are understood in terms of the 730 nm excitation light generating a primarily excited S(1) (pi,pi) state that transforms initially into a vibrationally hot (3)(d(z)2,d(x)2(-)(y)2) state. Cooling to the zeroth state is complete after ca. 8 ps. The cold (d,d) state converted to its daughter state, the (3)LMCT (pi,d(x)2(-)(y)2), which itself decays to the ground state with a lifetime of 640 ps. The proposed deactivation mechanism applies to the D(2)(d)-saddled and the D(4)(h)-planar structure as well. The results presented here for NiPc(BuO)(8) suggest that in nickel phthalocyanines the (1,3)LMCT (pi,d(x)2(-)(y)2) states may provide effective routes for radiationless deactivation of the (1,3)(pi,pi) states.  相似文献   

7.
The excited-state properties of the transition metal complexes tris(2,2'-bipyridine) ruthenium(II) and tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) are examined using picosecond time-resolved luminescence spectroscopy. For both complexes, direct observation of a short-lived high-energy emission with a lifetime of less than 4 ps is reported. Upon deuteriation of the complexes the lifetime of the high-energy emission shows a marked increase with a biexponential decay (20 and approximately 300 ps components). Examination by time-resolved excited-state resonance Raman shows that for the perprotio complexes features attributable to the 3MLCT excited state are formed within 4 ps, while for the perdeuterio a rise time of approximately 20 ps is observed in the 3MLCT features. The results indicate that the emission in both cases may be 1MLCT in origin and are discussed with respect to heterogeneous electron transfer.  相似文献   

8.
The decay paths on the singlet excited-state surface of 9H-adenine and the associated energy barriers have been calculated at the CAS-PT2//CASSCF level. There are three fundamental paths for the photophysics: two paths for the (1)L(b) state which are virtually barrierless at the present level of theory and correspond to formation of the (n,pi) intermediate and direct decay to the ground state and a third path for ground-state decay of the (n,pi) state with an activation barrier of approximately 0.1 eV. The (1)L(a) state, which has the largest oscillator strength, either decays directly to the ground state or contributes indirectly to the excited-state lifetime by populating the two other states. The results are used to interpret the photophysics in terms of an excited-state plateau for the (1)L(b) state that corresponds to the short-lived excited-state component (approximately 0.1 ps) and a well (i.e., a proper minimum) for the (n,pi) state that gives rise to the long component (1 ps or more). The direct decay to the ground state of the (1)L(b) state is probably the decay channel invoked to explain the experimental wavelength dependence of the relative amplitudes of the two components. In addition to that, the excited-state component in the nanosecond range detected in the time-resolved photoelectron spectrum is proposed to be a triplet (pi,pi) state formed after intersystem crossing from the singlet (n,pi) state.  相似文献   

9.
We present a combined density functional theory (DFT)/time-dependent density functional theory (TDDFT) study of the geometry, electronic structure, and absorption and emission properties of the tetranuclear "cubane" Cu4I4py4 (py = pyridine) system. The geometry of the singlet ground state and of the two lowest triplet states of the title complex were optimized, followed by TDDFT excited-state calculations. This procedure allowed us to characterize the nature of the excited states involved in the absorption spectrum and those responsible for the dual emission bands observed for this complex. In agreement with earlier experimental proposals, we find that while in absorption the halide-to-pyridine charge-transfer excited state (XLCT*) has a lower energy than the cluster-centered excited state (CC*), a strong geometrical relaxation on the triplet cluster-centered state surface leads to a reverse order of the excited states in emission.  相似文献   

10.
The hydrogen bonding between water and pyrazine in its ground, lowest (n,pi*), and lowest (pi,pi*) states is investigated using density-functional theory (DFT), time-dependent density function theory (TD-DFT), coupled-cluster singles and doubles (CCSD) theory and equation-of-motion coupled cluster (EOM-CCSD) theory. For all states, the minimum-energy configuration is found to be an orthodox linear hydrogen-bonded species, with the bond strength increasing by 0.4 kcal mol-1 upon formation of the (pi,pi*) state and decreasing by 1.0 kcal mol-1 upon formation of the (n,pi*) state. The calculated solvent shifts for the complexes match experimental data and provide a basis for the understanding of the aqueous solvation of pyrazine, and the excited-state complexes are predicted to be only short-lived, explaining the failure of molecular beam experiments to observe them. Quite a different scenario for hydrogen bonding to the (n,pi*) excited state is found compared to those of H2O:pyridine and H2O:pyrimidine: for pyridine linear hydrogen bonds are unstable and hydrogen bonds to the electron-enriched pi cloud are strong, whereas for pyrimidine the excitation localizes on the nonbonded nitrogen leaving the hydrogen-bonding unaffected. For H2O:pyrazine, the (n,pi*) excitation remains largely delocalized, providing a distinct intermediary scenario.  相似文献   

11.
Walters KA  Kim YJ  Hupp JT 《Inorganic chemistry》2002,41(11):2909-2919
Stark emission spectroscopy, transient DC photoconductivity (TDCP), and ground-state dipole moment measurements have been used to evaluate charge transfer (CT) within various (X(2)-bipyridine)Re(I)(CO)(3)Cl complexes following (3)MLCT excited-state formation. The Stark technique reports on vector differences between ground-state (mu(g)) and excited-state (mu(e)) dipole moments, while TDCP, when combined with independently obtained mu(g) information, reports on scalar differences. For systems featuring collinear, same-signed ground- and excited-state dipole moments, the scalar and vector differences are equivalent. However, for the low symmetry systems studied here, they are distinctly different. The vector difference yields the effective adiabatic one-electron-transfer distance (R(12)), while the combined vector and scalar data yield information about dipole rotation upon ground-state/excited-state interconversion. For the systems examined, charge transfer distances are substantially smaller than geometric electron-donor/electron-acceptor site separation distances. The measured distances are significantly affected by changes in acceptor ligand substituent composition. Electron-donating substituents decrease CT distances, while electron-withdrawing substituents increase CT distances, as do aromatic substituents that are capable of expanding the bipyridyl ligand (acceptor ligand) pi system. The Stark measurements additionally indicate that the CT vector and the transition dipole moment are significantly orthogonal, a consequence of strong polarization of the Re-Cl bond (orthogonal to the metal/acceptor-ligand plane) in the ground electronic state and relaxation of the polarization in the upper state. The ground-state Re-Cl bond polarization is sufficiently large that the overall ground-state scalar dipole moment exceeds the overall excited-state scalar dipole moment, despite transfer of an electron from the metal center to the diimine ligand. This finding provides an explanation for the otherwise puzzling negative solvatochromism exhibited in this family of compounds. Combining TDCP and Stark results, we find that the dipole moment can be rotated in some instances by more than 90 degrees upon (3)MLCT excited-state formation. The degree of rotation or reorientation can be modulated by changing the identity of the acceptor ligand substituents. Reorientational effects are smallest when the compounds feature aromatic substituents capable of spatially extending the pi system of the acceptor ligand.  相似文献   

12.
The molecular structure and dynamics of the photoexcited metal-to-ligand-charge-transfer (MLCT) state of [Cu(I)(dmp)(2)](+), where dmp is 2,9-dimethyl-1,10-phenanthroline, in acetonitrile have been investigated by time-domain pump-probe X-ray absorption spectroscopy, femtosecond optical transient spectroscopy, and density functional theory (DFT). The time resolution for the excited state structural determination was 100 ps, provided by single X-ray pulses from a third generation synchrotron source. The copper ion in the thermally equilibrated MLCT state has the same oxidation state as the corresponding copper(II) complex in the ground state and was found to be penta-coordinate with an average nearest neighbor Cu-N distance 0.04 A shorter than that of the ground state [Cu(I)(dmp)(2)](+). The results confirm the previously proposed "exciplex" structure of the MLCT state in Lewis basic solvents. The evolution from the photoexcited Franck-Condon MLCT state to the thermally equilibrated MLCT state was followed by femtosecond optical transient spectroscopy, revealing three time constants of 500-700 fs, 10-20 ps, and 1.6-1.7 ns, likely related to the kinetics for the formation of the triplet MLCT state, structural relaxation, and the MLCT excited-state decay to the ground state, respectively. DFT calculations are used to interpret the spectral shift on structural relaxation and to predict the geometries of the ground state, the tetracoordinate excited state, and the exciplex. The DFT calculations also indicate that the amount of charge transferred from copper to the dmp ligand upon photoexcitation is similar to the charge difference at the copper center between the ground-state copper(I) and copper(II) complexes.  相似文献   

13.
Femtosecond transient IR and visible absorption spectroscopies have been employed to investigate the excited-state photophysics of vitamin B12 (cyanocobalamin, CNCbl) and the related cob(III)alamins, azidocobalamin (N3Cbl), and aquocobalamin (H2OCbl). Excitation of CNCbl, H2OCbl, or N3Cbl results in rapid formation of a short-lived excited state followed by ground-state recovery on time scales ranging from a few picoseconds to a few tens of picoseconds. The lifetime of the intermediate state is influenced by the sigma-donating ability of the axial ligand, decreasing in the order CNCbl > N3Cbl > H2OCbl, and by the polarity of the solvent, decreasing with increasing solvent polarity. The peak of the excited-state visible absorption spectrum is shifted to ca. 490 nm, and the shape of the spectrum is characteristic of weak axial ligands, similar to those observed for cob(II)alamin, base-off cobalamins, or cobinamides. Transient IR spectra of the upper CN and N3 ligands are red-shifted 20-30 cm(-1) from the ground-state frequencies, consistent with a weakened Co-upper ligand bond. These results suggest that the transient intermediate state can be attributed to a corrin ring pi to Co 3d(z2) ligand to metal charge transfer (LMCT) state. In this state bonds between the cobalt and the axial ligands are weakened and lengthened with respect to the corresponding ground states.  相似文献   

14.
The lowest absorption band of fac-[Re(Cl)(CO)3(5-NO2-phen)] encompasses two close-lying MLCT transitions. The lower one is directed to LUMO, which is heavily localized on the NO2 group. The UV-vis absorption spectrum is well accounted for by TD-DFT (G03/PBEPBE1/CPCM), provided that the solvent, MeCN, is included in the calculations. Near-UV excitation of fac-[Re(Cl)(CO)3(5-NO2-phen)] populates a triplet metal to ligand charge-transfer excited state, 3MLCT, that was characterized by picosecond time-resolved IR spectroscopy. Large positive shifts of the nu(CO) bands upon excitation (+70 cm(-1) for the A'1 band) signify a very large charge separation between the Re(Cl)(CO)3 unit and the 5-NO2-phen ligand. Details of the excited-state character are revealed by TD-DFT calculated changes of electron density distribution. Experimental excited-state nu(CO) wavenumbers agree well with those calculated by DFT. The 3MLCT state decays with a ca. 10 ps lifetime (in MeCN) into another transient species, that was identified by TRIR and TD-DFT calculations as an intraligand 3npi excited state, whereby the electron density is excited from the NO2 oxygen lone pairs to the pi system of 5-NO2-phen. This state is short-lived, decaying to the ground state with a approximately 30 ps lifetime. The presence of an npi state seems to be the main factor responsible for the lack of emission and the very short lifetimes of 3MLCT states seen in all d6-metal complexes of nitro-polypyridyl ligands. Localization of the excited electron density in the lowest 3MLCT states parallels localization of the extra electron in the reduced state that is characterized by a very small negative shift of the nu(CO) IR bands (-6 cm(-1) for A'1) but a large downward shift of the nu(s)(NO2) IR band. The Re-Cl bond is unusually stable toward reduction, whereas the Cl ligand is readily substituted upon oxidation.  相似文献   

15.
Ground-state structures with side-on nitrosyl (eta (2)-NO) and isonitrosyl (ON) ligands have been observed in a variety of transition-metal complexes. In contrast, excited-state structures with bent-NO ligands have been proposed for years but never directly observed. Here, we use picosecond time-resolved infrared spectroscopy and density functional theory (DFT) modeling to study the photochemistry of Co(CO) 3(NO), a model transition-metal-NO compound. Surprisingly, we have observed no evidence for ON and eta (2)-NO structural isomers, but we have observed two bent-NO complexes. DFT modeling of the ground- and excited-state potentials indicates that the bent-NO complexes correspond to triplet excited states. Photolysis of Co(CO) 3(NO) with a 400-nm pump pulse leads to population of a manifold of excited states which decay to form an excited-state triplet bent-NO complex within 1 ps. This structure relaxes to the ground triplet state in ca. 350 ps to form a second bent-NO structure.  相似文献   

16.
Ultrafast excited-state intermolecular proton transfer (PT) reactions in 7-azaindole(methanol)(n) (n = 1-3) [7AI(MeOH)(n=1-3)] complexes were performed using dynamics simulations. These complexes were first optimized at the RI-ADC(2)/SVP-SV(P) level in the gas phase. The ground-state structures with the lowest energy were also investigated and presented. On-the-fly dynamics simulations for the first-excited state were employed to investigate reaction mechanisms and time evolution of PT processes. The PT characteristics of the reactions were confirmed by the nonexistence of crossings between S(ππ*) and S(πσ*) states. Excited-state dynamics results for all complexes exhibit excited-state multiple-proton transfer (ESmultiPT) reactions via methanol molecules along an intermolecular hydrogen-bonded network. In particular, the two methanol molecules of a 7AI(MeOH)(2) cluster assist the excited-state triple-proton transfer (ESTPT) reaction effectively with highest probability of PT.  相似文献   

17.
18.
UV-vis absorption and picosecond time-resolved IR (TRIR) spectra of amido and phosphido complexes fac-[Re(ER2)(CO)3(bpy)] (ER2 = NHPh, NTol2, PPh2, bpy = 2,2'-bipyridine, Tol = 4-methylphenyl) were investigated in conjunction with DFT and TD-DFT calculations in order to understand their ground-state electronic structure, low-lying electronic transitions and excited-state character and dynamics. The HOMO is localized at the amido/phosphido ligand. Amide and phosphide ligands are sigma-bonded to Re, the pi interaction being negligible. Absorption spectra show a weak band at low energies (1.7-2.1 eV) that arises from essentially pure ER(2) --> bpy ligand-to-ligand charge transfer (LLCT). The lowest excited state is the corresponding triplet, (3)LLCT. Low triplet energies and large distortions diminish the excited-state lifetimes to 85 and 270 ps for NHPh and NTol(2), respectively, and to ca. 30 ps for PPh2. nu(CO) vibrations undergo only very small ( bpy MLCT character, is a unique feature of the amido/phoshido complexes, whose lowest excited state can be viewed as containing a highly unusual aminyl/phosphinyl radical-cationic ligand. For comparison, the amino and phosphino complexes fac-[Re(NHPh(2))(CO)3(bpy)]+ and fac-[Re(PPh3)(CO)3(bpy)]+ are shown to have the usual Re --> bpy (3)MLCT lowest excited states, characterized by upshifted nu(CO) bands.  相似文献   

19.
A series of bis(alpha-iminopyridine)metal complexes featuring the first-row transition ions (Cr, Mn, Fe, Co, Ni, and Zn) is presented. It is shown that these ligands are redox noninnocent and their paramagnetic pi radical monoanionic forms can exist in coordination complexes. Based on spectroscopic and structural characterizations, the neutral complexes are best described as possessing a divalent metal center and two monoanionic pi radicals of the alpha-iminopyridine. The neutral M(L*)2 compounds undergo ligand-centered, one-electron oxidations generating a second series, [(L(x))2M(THF)][B(ArF)4] [where L(x) represents either the neutral alpha-iminopyridine (L)0 and/or its reduced pi radical anion (L*)-]. The cationic series comprise mostly mixed-valent complexes, wherein the two ligands have formally different redox states, (L)0 and (L*)-, and the two ligands may be electronically linked by the bridging metal atom. Experimentally, the cationic Fe and Co complexes exhibit Robin-Day Class III behavior (fully delocalized), whereas the cationic Zn, Cr, and Mn complexes belong to Class I (localized) as shown by X-ray crystallography and UV-vis spectroscopy. The delocalization versus localization of the ligand radical is determined only by the nature of the metal linker. The cationic nickel complex is exceptional in this series in that it does not exhibit any ligand mixed valency. Instead, its electronic structure is consistent with two neutral ligands (L)0 and a monovalent metal center or [(L)2Ni(THF)][B(ArF)4]. Finally, an unusual spin equilibrium for Fe(II), between high spin and intermediate spin (S(Fe) = 2 <--> S(Fe) = 1), is described for the complex [(L*)(L)Fe(THF)][B(ArF)4], which consequently is characterized by the overall spin equilibrium (S(tot) = 3/2 <--> S(tot) = 1/2). The two different spin states for Fe(II) have been characterized using variable temperature X-ray crystallography, EPR spectroscopy, zero-field and applied-field M?ssbauer spectroscopy, and magnetic susceptibility measurements. Complementary DFT studies of all the complexes have been performed, and the calculations support the proposed electronic structures.  相似文献   

20.
The lifetimes and transient resonance Raman spectra for Ru(II) complexes with the dipyrido[2,3-a:3',2'-c]phenazine (ppb) ligand and substituted analogues have been measured. The effect of altering the Ru(II) center ([Ru(CN)4]2- versus [Ru(bpy)2]2+), of the complex, on the excited-state lifetimes and spectra has been considered. For [Ru(bpy)2L]2+ complexes the excited-state lifetimes range from 124 to 600 ns in MeCN depending on the substituents on the ppb ligand. For the [Ru(CN)4L]2- complexes the lifetimes in H2O are approximately 5 ns. The transient resonance Raman spectra for the MLCT excited states of these complexes have been measured. The data are analyzed by comparison with the resonance Raman spectra of the electrochemically reduced [(PPh3)2Cu(mu-L*-)Cu(PPh3)2]+ complexes. The vibrational spectra of the complexes have been modeled using DFT methods. For experimental ground-state vibrational spectra of the complexes the data may be compared to calculated spectra of the ligand or metal complex. It is found that the mean absolute deviation between experimental and calculated frequencies is less for the calculation on the respective metal complexes than for the ligand. For the transient resonance Raman spectra of the complexes the observed vibrational bands may be compared with those of the calculated ligand radical anion, the reduced complex [Ru(CN)4L*-]3-, or the triplet state of the complex. In terms of a correlation with the observed transient RR spectra, calculations on the metal complex models offered no significant improvement compared to those based on the ligand radical anion alone. In all cases small structural changes are predicted on going from the ground to excited state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号