首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rheology, drag reduction and cryo-TEM experiments were performed on Arquad 16–50/NaSal and Ethoquad O/12/NaSal surfactant systems at different counterion-to-surfactant ratios and at constant low surfactant concentrations, 5 mM, appropriate for drag reduction. The molar ratio of counterion-to-surface was varied from 0.6 to 2.5. All the surfactant systems described here are viscoelastic and drag reducing. The viscoelasticity and drag reducing effectiveness increase with increase in counterion/surfactant ratio. Network are present in the solutions with high ratio, and they are viscoelastic. However, shear is needed to induce network formation for solutions at low ratio. Cryo-TEM images confirm the existence of thread-like micelles which form entanglement networks, and show that the micellar network becomes denser with increasing counterion/surfactant ratio in one surfactant series. Both increase in the counterion/surfactant ratio and increase in the shear rate result in shorter relaxation times. For some of these systems, abrupt increase in viscosity is observed at certain shear rates which are time effects affecting microstructure rearrangements rather than formation of shear induced structures.  相似文献   

2.
Mixtures of xanthan and guar gum in aqueous solution were studied in two flow situations: simple shear and porous media. In addition, solids transport in vertical annular flow of sand suspensions was explored. The zero shear rate viscosity of the solutions displayed a pronounced synergy: the viscosity of the mixture is higher than that of the polymer solutions in a wide range of relative concentrations of the two polymers, in agreement with previous literature. However, at relatively high shear rates, the viscosity approaches the value of the more viscous xanthan gum solutions at mass fractions of xanthan gum between 0.1 and 0.15, and the degree of synergy substantially decreases. Stress relaxation experiments in simple shear indicate that the polymer mixtures exhibit a well-defined yield stress after relaxation that is absent in solutions of pure polymers. In porous media flow experiments, a synergistic behavior mimicking the shear flow results was obtained for the polymer mixtures at low shear rates. However, at a critical shear rate, the apparent viscosity in porous media flows exceeds the shear viscosity due to the elongational nature of flow in the pores. The solids transport capacity in annular flows is well-represented by trends in shear viscosity and stress relaxation behavior. However, the lack of viscosity synergy at high shear rates limits the applicability of the mixtures as a way to improve solids suspension capacity in annular flows.  相似文献   

3.
We study shear banding flows in models of wormlike micelles or polymer solutions, and explore the effects of different boundary conditions for the viscoelastic stress. These are needed because the equations of motion are inherently non-local and include “diffusive” or square-gradient terms. Using the diffusive Johnson–Segalman model and a variant of the Rolie-Poly model for entangled micelles or polymer solutions, we study the interplay between different boundary conditions and the intrinsic stress gradient imposed by the flow geometry. We consider prescribed gradient (Neumann) or value (Dirichlet) of the viscoelastic stress tensor at the boundary, as well as mixed boundary conditions in which an anchoring strength competes with the gradient contribution to the stress dynamics. We find that hysteresis during shear rate sweeps is suppressed if the boundary conditions favor the state that is induced by the sweep. For example, if the boundaries favor the high shear rate phase then hysteresis is suppressed at the low shear rate edges of the stress plateau. If the boundaries favor the low shear rate state, then the high shear rate band can lie in the center of the flow cell, leading to a three-band configuration. Sufficiently strong stress gradients due to curved flow geometries, such as that of cylindrical Couette flow, can convert this to a two-band state by forcing the high shear rate phase against the wall of higher stress, and can suppress the hysteresis loop observed during a shear rate sweep.  相似文献   

4.
Bilgen  E. 《Rheologica Acta》1971,10(4):574-581
Rheologica Acta - The non-linear, steady flow behavior of dilute solutions of poly ethylene oxide at high shear rates is experimentally studied. The shear stress-shear rate relations at low and...  相似文献   

5.
Aqueous solutions of some cationic detergents show rheopectic behaviour at very low concentrations. Rheological measurements and the electrical anisotropy of the streaming solutions indicate that the rheopectic behaviour of the solutions is due to a shear induced phase transition.  相似文献   

6.
We numerically solve the time-dependent planar Poiseuille flow of a Johnson–Segalman fluid with added Newtonian viscosity. We consider the case where the shear stress/shear rate curve exhibits a maximum and a minimum at steady state. Beyond a critical volumetric flow rate, there exist infinite piecewise smooth solutions, in addition to the standard smooth one for the velocity. The corresponding stress components are characterized by jump discontinuities, the number of which may be more than one. Beyond a second critical volumetric flow rate, no smooth solutions exist. In agreement with linear stability analysis, the numerical calculations show that the steady-state solutions are unstable only if a part of the velocity profile corresponds to the negative-slope regime of the standard steady-state shear stress/shear rate curve. The time-dependent solutions are always bounded and converge to different stable steady states, depending on the initial perturbation. The asymptotic steady-state velocity solution obtained in start-up flow is smooth for volumetric flow rates less than the second critical value and piecewise smooth with only one kink otherwise. No selection mechanism was observed either for the final shear stress at the wall or for the location of the kink. No periodic solutions have been found for values of the dimensionless solvent viscosity as low as 0.01.  相似文献   

7.
 The apparent viscosities of purely viscous non-Newtonian fluids are shear rate dependent. At low shear rates, many of such fluids exhibit Newtonian behaviour while at higher shear rates non-Newtonian, power law characteristics exist. Between these two ranges, the fluid's viscous properties are neither Newtonian or power law. Utilizing an apparent viscosity constitutive equation called the “Modified Power Law” which accounts for the above behavior, solutions have been obtained for forced convection flows. A shear rate similarity parameter is identified which specifies both the shear rate range for a given fluid and set of operating conditions and the appropriate solution for that range. The results of numerical solutions for the friction factor–Reynolds number product and for the Nusselt number as a function of a dimensionless shear rate parameter have been presented for forced fully developed laminer duct flows of different cross-sections with modified power law fluids. Experimental data is also presented showing the suitability of the “Modified Power Law” constitutive equation to represent the apparent viscosity of various polymer solutions. Received on 21 August 2000  相似文献   

8.
Viscous fingering in surfactant solutions in a rectangular Hele–Shaw cell was investigated. Test fluids were aqueous solutions of cetyltrimethylammonium bromide (CTAB) with sodium salicylate (NaSal) as a counter ion, and the ratio of mole concentration of CTAB and that of NaSal was 1–7.7. Two fluids that had a mole concentration different from that of CTAB were used. Air was injected into the cell and the growth of the interface between air and a CTAB/NaSal solution was observed. The fingertip grew similar to the finger growth in shear-thinning fluids at low pressure gradients. It took a cuspidate shape at the intermediate pressure gradient, and a sudden protrusion at a critical shear rate occurred. In high shear rate regions, the finger behaved as in a less shear-thinning fluid. These phenomena relate to rheological properties of the test fluids. Comparison with flow curves for CTAB/NaSal systems showed that the critical shear rate related to the shear rate at which a bending point appeared in the flow curve.  相似文献   

9.
Aqueous solutions of a branched nonionic surfactant were studied in the isotropic, cubic and hexagonal phase by means of rheological and small-angle light scattering (SALS) experiments. The isotropic phase behaved like a Newtonian liquid. An increase of activation energy of viscous flow was found near the overlap concentration of spherical micelles, but no shear thinning was observed. The viscosity of low concentrated samples increased slightly when the lower critical solution temperature was approached. This increase of viscosity was much smaller compared to common nonionic surfactants. The cubic phases behaved as elastic solids with a high plateau modulus, and shear melting occurred at high shear stresses. The hexagonal phase showed complex behavior. Shear orientation could be achieved by large amplitude oscillatory shear and was proved by rheo-small-angle light scattering. Two orientations were observed, at first perpendicular to the flow direction, i.e., log-rolling state and, secondly, an in-shear-plane orientation parallel to the flow direction. The linear viscoelastic region of the hexagonal phase was extremely small and was detected by simultaneous rheo-small angle light scattering. Shear alignment lead to a decrease of the moduli.  相似文献   

10.
Viscosity, modulus, and yield stress for 0–6 wt% aqueous solutions of Carbopol 941 were investigated using constant shear rate, constant shear stress, and dynamic oscillatory experiments. The microgel character of the polymer was evident from the solid-like behavior of the solutions above 1 wt%. Yield stress increased with concentration, but yield occurred at a critical shear strain of 40%, independent of concentration. The static stress-strain relationship became non-linear at ~ 25% strain, in fair agreement with the onset of non-linear response in the storage modulus at ~ 10% strain. Small strain moduli from static and low frequency measurements agreed rather well; modulus values obtained from the recoverable strain after yielding were 30–40% smaller. Solutions flowed at near-constant stress in the low shear rate regime; at higher rates the stress increases with shear rate more rapidly. The viscosity did not obey the Cox-Merz rule. Steady-state viscosity scaled with polymer concentration to the 3/4 power. Results were interpreted using a cellular, deformable sphere model for the polymer, in analogy to emulsions and foams.  相似文献   

11.
The rheological behavior of hydrophobically modified hydroxyethyl cellulose (HMHEC) and xanthan gum solutions has been characterized in simple shear flow, opposed-jets flow, and flow through porous media. Both polymers exhibit shear thinning in simple shear flow and apparent shear thinning in flow through porous media. Analysis of the results shows there is a direct correspondence between shear viscosities determined in simple shear experiments and apparent viscosities in porous media flow at relatively low shear rates. At high shear rates the extensional component of the flow in porous media appreciably increases the apparent viscosity over the simple shear values. This increase is shown to correlate with results obtained in opposed-jets experiments, and is attributed to formation of transient entanglements.  相似文献   

12.
The paper concerns an experimental study of the fully developed turbulent pipe flow of several different aqueous polymer solutions: 0.25%, 0.3% and 0.4% carboxymethylcellulose (CMC), 0.2% xanthan gum (XG), a 0.09%/0.09% CMC/XG blend, 0.125% and 0.2% polyacrylamide (PAA). The flow data include friction factor vs. Reynolds number, mean velocity and near-wall shear rate distributions, and axial velocity fluctuation intensity u′ at a fixed radial location as a laminar/turbulent transition indicator. For each fluid we also include measurements of shear viscosity, first normal-stress difference and extensional viscosity. At high shear rates we find that the degree of viscoelasticity increases with concentration (0.3% CMC is an exception) for a given polymer, and in the sequence XG, CMC/XG, CMC, PAA, whilst at low shear rates the ranking changes to CMC, CMC/XG, XG, PAA. The extensional viscosity ranking is XG/CMC, XG, CMC, PAA at high strain rates and the same as that for the viscoelasticity at low shear rates. We find that the observed drag-reduction behaviour is consistent for most part with the viscoelastic and extensional-viscosity behaviour at the low shear and strain rates typical of those occurring in the outer zone of the buffer region.Although laminar/turbulent transition is practically indiscernible from the friction factor vs. Reynolds number plots, particularly for PAA and XG, the u′ level provides a very clear indicator and it is found that the transition delay follows much the same trend with elasticity/extensional viscosity as the drag reduction.  相似文献   

13.
Human blood at physiological volume concentration exhibits non-Newtonian and thixotropic properties. The blood flow in the microcirculation is pulsatile, initiated from the heart pulse and can be considered as superposition of two partial flows: a) a steady shear, and b) an oscillatory shear. Until now steady and viscoelastic behavior were separately investigated. Here we present the response to the combination of steady and oscillatory shear for human blood, a high molecular weight aqueous polymer solution (polyacrylamide AP 273E) and an aqueous xanthan gum solution. The polyacrylamide and xanthan solutions are fluids that model the rheological properties of human blood. In general, parameters describing blood viscoelasticity became less pronounced as superimposed steady shear increased, especially at low shear region and by elasticity, associated with reduction in RBC aggregation. The response of polymer solutions to superposition shows qualitative similarities with blood by elasticity, but their quantitative response differed from that of blood. By viscosity another behavior was observed. The superposition effect on viscous component was described by a modified Carreau equation and for the elastic component by an exponential equation.Paper in part presented at the Symposium on Rheology and Computational Fluid Mechanics dedicated to the memory of Prof. A. C. Papanastasiou, University of Cyprus, Nicosia, July 4–5, 1996  相似文献   

14.
Numerical solutions are presented for fully developed laminar flow for a modified power law fluid (MPL) in a rectangular duct. The solutions are applicable to pseudoplastic fluids over a wide shear rate range from Newtonian behavior at low shear rates, through a transition region, to power law behavior at higher shear rates. The analysis identified a dimensionless shear rate parameter which, for a given set of operating conditions, specifies where in the shear rate range a particular system is operating, i.e. in the Newtonian, transition, or power law regions. The numerical results of the friction factor times Reynolds number for the Newtonian and power law region are compared with previously published results showing agreement within 0.05% in the Newtonian region, and 0.9% and 5.1% in the power law region. Rheological flow curves were measured for three CMC-7H4 solutions and were found to be well represented by the MPL constitutive equation. The friction factor times Reynolds number values were measured in the transition region for which previous measurements were unavailable. Good agreement was found between experiment and calculation thus confirming the validity of the analysis.  相似文献   

15.
Aqueous solutions of cationic surfactant systems with strongly binding counterions show the striking phenomenon of shear induced phase transitions. At low shear rates or angular frequencies, the solutions exhibit Newtonian flow. At high rates of shear, however, the rheological properties change dramatically. Above a well defined threshold value of the velocity gradient, a supermolecular structure can be formed from micellar aggregates. This shear induced structure (SIS) behaves like a gel and exhibits strong flow birefringence. The formation of the shear induced structure is very complicated and depends on the specific conditions of the surfactant system. In this paper we discuss new results which have been obtained from rheological measurements and from flow birefringence data. We examine the stability of the shear induced state as a function of temperature, surfactant concentration and salt concentration and we analyse the effect of solubilisation of alcohols and hydrocarbons. The results are interpreted in terms of a kinetic model which accounts for the observed behavior.Dedicated to the 60. birthday of Prof. H. Harnisch, Hoechst AGPartly presented at the 2nd Conference of European Rheologists, Prague, June 17–20, 1986  相似文献   

16.
Zusammenfassung Die Konzentrationsabhängigkeit der viskoelastischen Eigenschaften von Polyisobutylenlösungen in Lösungsmitteln mit verschiedener thermodynamischer Güte wurde mit einem Weissenberg-Rheogoniometer untersucht. Es wurde festgestellt, daß die Spriggssche 4-Parameter-Theorie den Übergang von niedrigen zu hohen Schergeschwindigkeiten nicht zufriedenstellend beschreibt. Die Schergeschwindigkeitsabhängigkeit des Schermoduls zeigt in den verschiedenen Lösungsmitteln ein Maximum. Die Konzentrationsabhängigkeit des Maximums wird durch das Molekulargewicht des Polymeren und die Lösungsmittelgüte wenig beeinflußt. Die Schergeschwindigkeiten, die dem Maximum entsprechen, zeigen dagegen eine Konzentrationsabhängigkeit, die von der Lösungsmittelgüte abhängt. Die Konzentrationsabhängigkeit und der Einfluß der Lösungsmittelgüte bei niedriger Scherrate entsprechen nur qualitativ den Voraussagen der strukturrheologischen Theorien.
Summary Concentration dependence of viscoelastic properties of polyisobutylene solutions in thermodynamically different solvents was investigated in the Weissenberg-Rheogoniometer. It was found, that the 4-Parameter Spriggs theory does not exactly describe the changes of rheological properties of these solutions by changing the shear rate from low to high.The shear modulus as a function of the shear rate has a maximum for the investigated solutions. The concentration dependence of this maximum shows a low sensitivity for the molecular weight of the polymer as well as for the thermodynamical properties of the solvent. The shear rate corresponding to the maximum value of the shear modulus is dependent on the concentration and the thermodynamical properties of the solvent. The existing structural rheological theories describe only qualitatively the concentration dependence and the influence of the solvent on the structural parameters even at low shear rates.


Mit 11 Abbildungen und 4 Tabellen  相似文献   

17.
Anionic polyacrylamide is a hydrolyzed form of polyacrylamide (HPAM), which suffers from mechanical degradation at turbulent flow rates. In order to investigate the possibility of improving the shear resistance of HPAM, various polyacrylamide/polysaccharide mixtures as well as single xanthan gum (XG) and guar gum (GG) polymer solutions were prepared and drag reduction (DR) measurements were performed in a closed flow loop. It was found that the DR efficiencies of both XG and GG solutions were directly proportional to polymer concentration and both solutions exhibited excellent mechanical resistance at turbulent conditions. The presence of XG in concentrated HPAM/XG solutions (C > 450 wppm) significantly improved both DR efficiency and shear resistance of the solutions (6–8% decline after shearing for 2 h). GG solutions exhibited smaller DR efficiencies than XG solutions. Due to small molar mass and low flexibility, GG was not as good a friction reducer as XG and HPAM; therefore, the presence of GG did not improve the DR behavior of the binary solutions. Another issue associated with HPAM is sensitivity to the presence of salt ions in the solution. The effect of salt on the DR behavior was verified by addition of 2% KCl to single and binary solutions. Drag reduction efficiencies of HPAM/XG/KCl solutions were 28 and 20% compared to 10% DR of 1000 wppm HPAM/KCl solution. It was found that the presence of XG in binary solutions significantly reduced the negative effect of salt ions on HPAM molecules.  相似文献   

18.
Computational modeling of the steady capillary Poiseuille flow of flow-aligning discotic nematic liquid crystals (DNLCs) using the Leslie–Ericksen (LE) equations predicts solution multiplicity and multistability. The phenomena are independent of boundary conditions. The steady state solutions are classified into: (a) primary, (b) secondary, and (c) hybrid. Primary solutions exist for all orientation boundary conditions and all flow rates, and are characterized by a flow-alignment angle that is closest to the anchoring angle at the bounding surface. Secondary solutions exist for all orientation boundary conditions and flow rates above a certain critical value. The secondary solutions are characterized by a flow-alignment angle which can be either the nearest neighbor below the primary solution or any multiple of π above. Hybrid solutions interpolate between the primary and the nearest secondary solutions, and hence exhibit two alignment angles. All solutions are stable to planar finite amplitude perturbations. Hybrid solutions are unstable to front propagation and lead to primary or secondary solutions. The non-Newtonian rheology of the primary and secondary solutions is characterized by non-classical shear thinning and thickening apparent viscosity behavior. Well-aligned monodomains can lead to shear thickening, thinning, or a sequence of both. The degree of rheological uncertainty is present for planar and homeotropic anchoring conditions. The non-Newtonian rheology of non-aligned samples leads to shear thinning and lack the uncertainty of well-aligned samples, since the apparent viscosity becomes insensitive to orientation.  相似文献   

19.
In this study, two variations of WBC (Wire-woven Bulk Cross), named semi-WBC and straight-WBC, are introduced. In the variations, helically formed wires in an ordinary WBC are partly or totally replaced with straight wires to obtain higher shear strength and modulus, and the fabrication processes are modified to enhance productivity. Analytic solutions of the relative density, shear strength and modulus for the three variations of WBCs including the ordinary WBC with X-orientation are derived. And CAD modeling, shear tests and FEA were performed to prove the analytic solutions. The effects of the curviness of the struts loaded or floating between face sheets, and the offset at the joints are evaluated. The semi- and straight WBCs had equivalent shear strengths and moduli comparable to those of typical aluminum honeycombs, and all the three variations of WBCs maintained their strengths at low densities down to 1%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号