首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The syntheses of the water-soluble, chelating phosphines 1,2-bis(bis(hydroxybutyl)phosphino)ethane (1, n = 3; DHBuPE) and 1,2-bis(bis(hydroxypentyl)phosphino)ethane (1, n = 4; DHPePE) are reported. These ligands (and, in general, other 1,2-bis(bis(hydroxyalkyl)phosphino)ethane ligands) can be used to impart water solubility to metal complexes. As examples of this, the [Ni(DHPrPE)(2)Cl]Cl (2), [Rh(DHPrPE)(2)][Cl] (3), and [Ru(DHBuPE)(2)Cl(2)][Cl] (4) complexes were synthesized; they are indeed soluble in water (>0.5 M). Crystals of DHPrPE (1, n = 2) are monoclinic, space group P2(1)/c, with a = 9.5935(8) ?, b = 9.353(2) ?, c = 10.655(2) ?, alpha = 90 degrees, beta = 100.03(1) degrees, gamma = 90, V = 941.5(5) ?(3), R = 0.051, and Z = 2. Crystals of [Ni(DHPrPE)(2)Cl]Cl (2) are monoclinic, space group I2, with a = 15.951(3) ?, b = 11.454(2) ?, c = 20.843(3) ?, alpha = 90 degrees, beta = 91.24(2) degrees, gamma = 90 degrees, V = 3807(2) ?(3), R = 0.062, and Z = 4. Crystals of [Rh(DHPrPE)(2)][Cl] (3) are triclinic, space group P&onemacr;, with a = 13.900(2) ?, b = 15.378(2) ?, c = 18.058(2) ?, alpha = 87.71(1) degrees, beta = 75.03(1) degrees, gamma = 85.24(1), V = 3715(2) ?(3), R = 0.044, and Z = 4. Crystals of [Ru(DHBuPE)(2)Cl(2)][Cl] (4) are monoclinic, space group C2/c, with a = 14.310(2) ?, b = 21.630(2) ?, c = 15.459(3) ?, alpha = 90 degrees, beta = 99.83(1) degrees, gamma = 90, V = 4715(1) ?(3), R = 0.056, and Z = 4.  相似文献   

2.
The "anti-crown" B-hexamethyl 9-mercuracarborand-3 (1) was shown to complex halide ions (I-, Br-, Cl-) in an eta(3)-sandwich fashion. Symmetry-allowed interactions of the filled halide ion p-orbitals and the corresponding empty mercury p-orbitals result in three equivalent p(Hg)-p(halide)-p(Hg) three-center two-electron bonds and a sandwich structure. The molecular structures of [Li.(H(2)O)(4)][1(2).I].2CH(3)CN, MePPh(3)[1(2).Br].((CH(3))(2)CO)(2).(H(2)O)(2), and PPN[1(2).Cl] were determined by single-crystal X-ray diffraction studies. Compound [Li.(H(2)O)(4)][1(2).I].2CH(3)CN crystallized in the triclinic space group P-1, a = 13.312(8) A, b = 13.983(9) A, c = 13.996(9) A, alpha = 61.16(2) degrees, beta = 82.34(2) degrees, gamma = 86.58(2) degrees, V = 4365(2) A(3), Z = 1, R = 0.063, and R(w) = 0.171. Compound MePPh(3)[1(2).Br].((CH(3))(2)CO)(2).(H(2)O)(2) crystallized in the monoclinic space group C2/c, a = 24.671(8) A, b = 17.576(6) A, c = 26.079(8) A, beta = 106.424(6) degrees, V = 10847(6) A(3), Z = 8, R = 0.0607, and R(w) = 0.1506. Compound PPN[1(2).Cl] crystallized in the monoclinic space group C2/m, a = 37.27(2) A, b = 29.25(1) A, c = 10.990(4) A, beta = 100.659(7) degrees, V = 11774(8) A(3), Z = 4, R = 0.0911, and R(w) = 0.2369.  相似文献   

3.
Resonance Raman spectra of the cubic metal-halide complexes having the general formula [M(6)X(8)Y(6)](2)(-) (M = Mo or W; X, Y = Cl, Br, or I) are reported. The three totally symmetric fundamental vibrations of these complexes are identified. The extensive mixing of the symmetry coordinates that compose the symmetric normal modes expected in these systems is not observed. Instead the "group-frequency" approximation is valid. Furthermore, the force constants of both the apical and face-bridging metal-halide bonds are insensitive to the identity of either the metal or the halide. Raman spectra of related complexes with methoxy and benzenethiol groups as ligands are reported along with the structural data for [Mo(6)Cl(8)(SPh)(6)][NBu(4)](2). Crystal data for [Mo(6)Cl(8)(SPh)(6)][NBu(4)](2) at -156 degrees C: monoclinic space group P2(1)/c; a = 12.588(3), b = 17.471(5), c = 20.646(2) ?; beta = 118.53(1) degrees, V = 3223.4 ?(3); d(calcd) = 1.664 g cm(-)(3); Z = 2.  相似文献   

4.
The single-crystal X-ray structures of [XF(6)][Sb(2)F(11)] (X = Cl, Br, I) have been determined and represent the first detailed crystallographic study of salts containing the XF(6)(+) cations. The three salts are isomorphous and crystallize in the monoclinic space group P2(1)/n with Z = 4: [ClF(6)][Sb(2)F(11)], a = 11.824(2) A, b = 8.434(2) A, c = 12.088(2) A, beta = 97.783(6) degrees , V = 1194.3(4) A(3), R(1) = 0.0488 at -130 degrees C; [BrF(6)][Sb(2)F(11)], a = 11.931(2) A, b = 8.492(2) A, c = 12.103(2) A, beta = 97.558(4) degrees , V = 1215.5(4) A(3), R(1) = 0.0707 at -130 degrees C; [IF(6)][Sb(2)F(11)], a = 11.844(1) A, b = 8.617(1) A, c = 11.979(2) A, beta = 98.915(2) degrees , V = 1207.8(3) A(3), R(1) = 0.0219 at -173 degrees C. The crystal structure of [IF(6)][Sb(2)F(11)] was also determined at -100 degrees C and was found to crystallize in the monoclinic space group P2(1)/m with Z = 4, a = 11.885(1) A, b = 8.626(1) A, c = 12.000(1) A, beta = 98.44(1), V = 1216.9(2) A(3), R(1) = 0.0635. The XF(6)(+) cations have octahedral geometries with average Cl-F, Br-F, and I-F bond lengths of 1.550(4), 1.666(11) and 1.779(6) [-173 degrees C]/1.774(8) [-100 degrees C] A, respectively. The chemical shifts of the central quadrupolar nuclei, (35,37)Cl, (79,81)Br, and (127)I, were determined for [ClF(6)][AsF(6)] (814 ppm), [BrF(6)][AsF(6)] (2080 ppm), and [IF(6)][Sb(3)F(16)] (3381 ppm) in anhydrous HF solution at 27 degrees C, and spin-inversion-recovery experiments were used to determine the T(1)-relaxation times of (35)Cl (1.32(3) s), (37)Cl (2.58(6) s), (79)Br (24.6(4) ms), (81)Br (35.4(5) ms), and (127)I (6.53(1) ms). Trends among the central halogen chemical shifts and T(1)-relaxation times of XF(6)(+), XO(4)(-), and X(-) are discussed. The isotropic (1)J-coupling constants and reduced coupling constants for the XF(6)(+) cations and isoelectronic hexafluoro species of rows 3-6 are empirically assessed in terms of the relative contributions of the Fermi-contact, spin-dipolar, and spin-orbit mechanisms. Electronic structure calculations using Hartree-Fock, MP2, and local density functional methods were used to determine the energy-minimized gas-phase geometries, atomic charges, and Mayer bond orders of the XF(6)(+) cations. The calculated vibrational frequencies are in accord with the previously published assignments and experimental vibrational frequencies of the XF(6)(+) cations. Bonding trends within the XF(6)(+) cation series have been discussed in terms of natural bond orbital (NBO) analyses, the ligand close-packed (LCP) model, and the electron localization function (ELF).  相似文献   

5.
An example of a direct axial interaction of a platinum(II) atom with a Mo(2) core through a uniquely designed tridentate ligand 6-(diphenylphosphino)-2-pyridonate (abbreviated as pyphos) is described. Treatment of PtX(2)(pyphosH)(2) (2a, X = Cl; 2b, X = Br; 2c, X = I) with a 1:1 mixture of Mo(2)(O(2)CCH(3))(4) and [Mo(2)(O(2)CCH(3))(2)(NCCH(3))(6)](2+) (3a) in dichloromethane afforded the linear trinuclear complexes [Mo(2)PtX(2)(pyphos)(2)(O(2)CCH(3))(2)](2) (4a, X = Cl; 4b, X = Br; 4c, X = I). The reaction of [Mo(2)(O(2)CCMe(3))(2)(NCCH(3))(4)](2+) (3b) with 2a-c in dichloromethane afforded the corresponding pivalato complexes [Mo(2)PtX(2)(pyphos)(2)(O(2)CCMe(3))(2)](2) (5a, X = Cl; 5b, X = Br; 5c, X = I), whose bonding nature is discussed on the basis of the data from Raman and electronic spectra as well as cyclic voltammograms. The linear trinuclear structures in 4b and 5a-c were confirmed by NMR studies and X-ray analyses: 4b, monoclinic, space group C2/c, a = 34.733(4) ?, b = 17.81(1) ?, c = 22.530(5) ?, beta = 124.444(8) degrees, V = 11498(5) ?(3), Z = 8, R = 0.060 for 8659 reflections with I > 3sigma(I) and 588 parameters; 5a, triclinic, space group P&onemacr;, a = 13.541(3) ?, b = 17.029(3) ?, c = 12.896(3) ?, alpha = 101.20(2) degrees, beta = 117.00(1) degrees, gamma = 85.47(2) degrees, V = 2599(1) ?(3), Z = 2, R = 0.050 for 8148 reflections with I > 3sigma(I) and 604 parameters; 5b, triclinic, space group P&onemacr;, a = 12.211(2) ?, b = 20.859(3) ?, c = 10.478(2) ?, alpha = 98.88(1) degrees, beta = 112.55(2) degrees, gamma = 84.56(1) degrees, V = 2433.3(8) ?(3), Z = 2, R = 0.042 for 8935 reflections with I > 3sigma(I) and 560 parameters; 5c, monoclinic, space group P2(1)/n, a = 13.359(4) ?, b = 19.686(3) ?, c = 20.392(4) ?, beta = 107.92(2) degrees, V = 5101(2) ?(3), Z = 4, R = 0.039 for 8432 reflections with I > 3sigma(I) and 560 parameters.  相似文献   

6.
New N,N '-bis(4-((4-alkoxybenzoyl)oxy)phenyl)-1,4-diaza-1,3-butadiene (L) ligands, obtained by condensation of 4-((alkoxybenzoyl)oxy)anilines and glyoxal, were complexed to different [ReX(CO)(3)] fragments to give the complexes [ReX(L)(CO)(3)] (X = Cl, Br, I) and [Re(CF(3)SO(3))(L)(CO)(3)].THF. The chloro and bromo complexes were obtained by direct reaction of the ligands with [ReX(CO)(5)] (X = Cl, Br), while the iodo and triflato derivatives were obtained via metathesis of the chloro or bromo precursors with potassium iodide or silver triflate respectively. The liquid-crystalline behavior of the ligands and the related rhenium complexes has been studied by means of optical microscopy, differential scanning calorimetry, and small angle X-ray diffraction. Nematic and smectic C phases were observed when the coordinated counteranions were Cl, Br, and I, respectively; the triflato derivatives were not mesomorphic.  相似文献   

7.
The reactions of the Re(V) starting material [ReO(PPh(3))(2)Cl(3)] with ligands of the type XN(Y)Z [X = Y = 2-pyridylmethyl, Z = -CH(2)CO(2)Et (L(1)Et), -CH(2)CH(2)CO(2)Et (L(2)Et), -CH(2)CH(2)CH(2)CH(2)CH(NHCO(2)Bu(t))CO(2)H (L(3)H); X = 2-pyridylmethyl, Y = 2-(1-methylimidazolyl)methyl, Z = -CH(2)CO(2)Et (L(4)Et)] yielded the Re(III) trichloride complexes of the type [ReCl(3)(L(n)R)]. The complexes are mononuclear, paramagnetic species with a facial geometry of the chloride ligands. The nitrogen donors of the tridentate L(n)()R ligands complete the distorted octahedral coordination spheres of the complexes. Crystal data: [ReCl(3)(L(1)Et)] (1), monoclinic, C2/m, a = 16.088(3) A, b = 9.980(2) A, c = 12.829(2) A, beta = 91.384(3) degrees, Z = 4, D(calc) = 1.967 g/cm(-)(3); [ReCl(3)(L(4)Et)] (4), monoclinic, C2/c, a = 22.880(1) A, b = 7.4926(4) A, c = 22.560(1) A, beta = 94.186(1) degrees, Z = 8, D(calc) = 2.001 g/cm(-3).  相似文献   

8.
The nine-membered [-Cu(II)-N-N-](3) ring of trimeric copper-pyrazolato complexes provides a sturdy framework on which water is twice deprotonated in consecutive steps, forming mu(3)-OH and mu(3)-O species. In the presence of excess chlorides the mu(3)-O(H) ligand is replaced by two mu(3)-Cl ions. The interconversion of mu(3)-OH and mu(3)-O and the exchange of mu(3)-O(H) and mu(3)-Cl are reversible, and the three species involved have been structurally characterized: [PPN][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)(thf)].CH(2)Cl(2) (1a), monoclinic P2(1)/n, a = 10.055(2) A, b = 35.428(5) A, c = 15.153(2) A, beta = 93.802(3) degrees, V = 5386(1) A(3), Z = 4; [Bu(4)N][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)] (1b), triclinic P-1, a = 9.135(2) A, b = 13.631(2) A, c = 14.510(2) A, alpha = 67.393(2) degrees, beta = 87.979(2) degrees, gamma = 80.268(3) degrees, V = 1643.2(4) A(3), Z = 2; [PPN](2)[Cu(3)(mu(3)-O)(mu-pz)(3)Cl(3)] (2), monoclinic P2/c, a = 12.807(2) A, b = 13.093(2) A, c = 23.139(4) A, beta = 105.391(3) degrees, V = 3741(1) A(3), Z = 2; [PPN](2)[Cu(3)(mu(3)-Cl)(2)(mu-pz)(3)Cl(3)].0.75H(2)O.0.5CH(2)Cl(2) (3a), triclinic P-1, a = 14.042(2) A, b = 23.978(4) A, c = 25.195(4) A, alpha = 76.796(3) degrees, beta = 79.506(3) degrees, gamma = 77.629(3) degrees, V = 7988(2) A(3), Z = 4; [Bu(4)N](2)[Cu(3)(mu(3)-Cl)(2)(mu-pz)(3)Cl(3)] (3b), monoclinic C2/c, a = 17.220(2) A, b = 15.606(2) A, c = 20.133(2) A, beta = 103.057(2) degrees, V = 5270(1) A(3), Z = 4; [Et(3)NH][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)(pzH)] (4), triclinic P-1, a = 11.498(2) A, b = 11.499(2) A, c = 12.186(2) A, alpha = 66.475(3) degrees, beta = 64.279(3) degrees, gamma = 80.183(3) degrees, V = 1331.0(5) A(3), Z = 2. Magnetic susceptibility measurements show that the three copper centers of 2 are strongly antiferromagnetically coupled with J(Cu-Cu) = -500 cm(-1).  相似文献   

9.
Tridentate ligands derived from benzimidazole, quinoline, and tryptophan have been synthesized, and their reactions with [NEt4]2[Re(CO)3Br3] have been investigated. The complexes 1-4 and 6 and 7 exhibit fac-{Re(CO)3N3} coordination geometry in the cationic molecular units, while 5 exhibits fac-{Re(CO)3N2O} coordination for the neutral molecular unit, where N3 and N2O refer to the ligand donor groups. The ligands bis(1-methyl-1H-benzoimidazol-2-ylmethyl)amine (L1), [bis(1-methyl-1H-benzoimidazol-2-ylmethyl)amino]acetic acid ethyl ester (L2), [bis(1-methyl-1H-benzoimidazol-2-ylmethy)amino]acetic acid methyl ester (L3), [bis(quinolin-2-ylmethyl)amino]acetic acid methyl ester (L4), 3-(1-methyl-1H-indol-3-yl)-2-[(pyridin-2-ylmethyl)amino]propionic acid (L5), 2-[bis(pyridin-2-ylmethyl)amino]-3-(1-methyl-1H-indol-3-yl)propionic acid (L6), and 2-[bis(quinolin-2-ylmethyl)amino]-3-(1-methyl-1H-indol-3-yl)propionic acid (L7) were obtained in good yields and characterized by elemental analysis, 1D and 2D NMR, and high-resolution mass spectrometry (HRMS). The rhenium complexes were obtained in 70-85% yields and characterized by elemental analysis, 1D and 2D NMR, HRMS, IR, UV, and luminescence spectroscopy, as well as X-ray crystallography for [Re(CO)3(L1)]Br (1), {[Re(CO)3(L2)]Br}2.NEt4Br . 8.5H2O (3(2).NEt4Br . 8.5H2O), [Re(CO)3(L4)]Br (4), and [Re(CO)3(L6)]Br (6). Crystal data for C21H19BrN5O3Re (1): monoclinic, P2(1)/c, a = 13.1851(5) A, b = 16.1292(7) A, c = 10.2689(4) A, beta = 99.353(1) degrees , V = 2154.8(2) A3, Z = 4. Crystal data for C56H73Br3N11O18.50 Re2 (3(2).NEt4Br . 8.5H2O): monoclinic, C2/c, a = 34.7760(19) A, b = 21.1711(12) A, c = 20.3376(11) A, beta = 115.944(1) degrees , V = 13464.5(1) A3, Z = 8. Crystal data for C26H21BrN3O5Re (4): monoclinic, P2(1)/c, a = 16.6504(6) A, b = 10.1564(4) A, c = 14.6954(5) A, beta = 96.739(1) degrees , V = 2467.9(2) A3, Z = 4. Crystal data for C27H24BrN4O5Re (6): monoclinic, P2(1), a = 8.7791(9) A, b = 16.312(2) A, c = 8.9231(9) A, beta = 90.030(1) degrees , V = 1277.8(2) A3, Z = 2.  相似文献   

10.
Mono- and dicopper(II) complexes of a series of potentially bridging hexaamine ligands have been prepared and characterized in the solid state by X-ray crystallography. The crystal structures of the following Cu(II) complexes are reported: [Cu(HL3)](ClO4)(3), C11H31Cl3CuN6O12, monoclinic, P2(1)/n, a = 8.294(2) A, b = 18.364(3) A, c = 15.674(3) A, beta = 94.73(2) degrees, Z = 4; ([Cu2(L4)(CO3)](2))(ClO4)(4).4H2O, C40H100Cl4Cu4N12O26, triclinic, P1, a = 9.4888(8) A, b = 13.353(1) A, c = 15.329(1) A, alpha = 111.250(7) degrees, beta = 90.068(8) degrees, gamma = 105.081(8) degrees, Z = 1; [Cu2(L5)(OH2)(2)](ClO4)(4), C13H36Cl4Cu2N6O18, monoclinic, P2(1)/c, a = 7.225(2) A, b = 8.5555(5) A, c = 23.134(8) A, beta = 92.37(1) degrees, Z = 2; [Cu2(L6)(OH2)(2)](ClO4)(4).3H2O, C14H44Cl4Cu2N6O21, monoclinic, P2(1)/a, a = 15.204(5) A, b = 7.6810(7) A, c = 29.370(1) A, beta = 100.42(2) degrees, Z = 4. Solution spectroscopic properties of the bimetallic complexes indicate that significant conformational changes occur upon dissolution, and this has been probed with EPR spectroscopy and molecular mechanics calculations.  相似文献   

11.
Dimeric rhodium(I) bis(carbonyl) chloride, [Rh(CO)(2)(mu-Cl)](2), is found to be a useful and convenient starting material for the syntheses of new cationic carbonyl complexes of both rhodium(I) and rhodium(III). Its reaction with the Lewis acids AlCl(3) or GaCl(3) produces in a CO atmosphere at room temperature the salts [Rh(CO)(4)][M(2)Cl(7)] (M = Al, Ga), which are characterized by Raman spectroscopy and single-crystal X-ray diffraction. Crystal data for [Rh(CO)(4)][Al(2)Cl(7)]: triclinic, space group Ponemacr; (No. 2); a = 9.705(3), b = 9.800(2), c = 10.268(2) A; alpha = 76.52(2), beta = 76.05(2), gamma = 66.15(2) degrees; V = 856.7(5) A(3); Z = 2; T = 293 K; R(1) [I > 2sigma(I)] = 0.0524, wR(2) = 0.1586. Crystal data for [Rh(CO)(4)][Ga(2)Cl(7)]: triclinic, space group Ponemacr; (No. 2); a = 9.649(1), b = 9.624(1), c = 10.133(1) A; alpha = 77.38(1), beta = 76.13(1), gamma = 65.61(1) degrees; V = 824.4(2) A(3); Z = 2; T = 143 K; R(1) [I > 2sigma(I)] = 0.0358, wR(2) = 0.0792. Structural parameters for the square planar cation [Rh(CO)(4)](+) are compared to those of isoelectronic [Pd(CO)(4)](2+) and of [Pt(CO)(4)](2+). Dissolution of [Rh(CO)(2)Cl](2) in HSO(3)F in a CO atmosphere allows formation of [Rh(CO)(4)](+)((solv)). Oxidation of [Rh(CO)(2)Cl](2) by S(2)O(6)F(2) in HSO(3)F results in the formation of ClOSO(2)F and two seemingly oligomeric Rh(III) carbonyl fluorosulfato intermediates, which are easily reduced by CO addition to [Rh(CO)(4)](+)((solv)). Controlled oxidation of this solution with S(2)O(6)F(2) produces fac-Rh(CO)(3)(SO(3)F)(3) in about 95% yield. This Rh(III) complex can be reduced by CO at 25 degrees C in anhydrous HF to give [Rh(CO)(4)](+)((solv)); addition of SbF(5) at -40 degrees C to the resulting solution allows isolation of [Rh(CO)(4)][Sb(2)F(11)], which is found to have a highly symmetrical (D(4)(h)()) [Sb(2)F(11)](-) anion. Oxidation of [Rh(CO)(2)Cl](2) in anhydrous HF by F(2), followed in a second step by carbonylation in the presence of SbF(5), is found to be a simple, straightforward route to pure [Rh(CO)(5)Cl][Sb(2)F(11)](2), which has previously been structurally characterized by us. All new complexes are characterized by vibrational and NMR spectroscopy. Assignment of the vibrational spectra and interpretation of the structural data are supported by DFT calculations.  相似文献   

12.
The molecular structure of the previously reported species "[Fe(bdtbpza)Cl]" has been revealed by X-ray structure determination to be a ferrous dimer [Fe(bdtbpza)Cl](2) (2c) [bdtbpza = bis(3,5-di-tert-butylpyrazol-1-yl)acetate]. The syntheses of ferrous 2:1 complexes [Fe(bpza)(2)] (3a) and [Fe(bdtbpza)(2)] (3c) as well as ferric 1:1 complexes [NEt(4)][Fe(bpza)Cl(3)] (4a) and [NEt(4)][Fe(bdmpza)Cl(3)] (4b) [bpza = bis(pyrazol-1-yl)acetate, bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate] are reported. Complexes 3a, previously reported [Fe(bdmpza)(2)] (3b), and 3c are high-spin. No spin crossover to the low-spin state was observed in the temperature range of 5-350 K. 4a and 4b are synthesized in one step and in high yield from [NEt(4)](2)[Cl(3)FeOFeCl(3)]. 4a and 4b are iron(III) high-spin complexes. Crystallographic information: 2c (C(24)H(39)ClFeN(4)O(2).CH(2)Cl(2).CH(3)CN) is triclinic, P1, a = 12.171(16) A, b = 12.851(14) A, c = 13.390(13) A, alpha = 98.61(9) degrees, beta = 113.51(11) degrees, gamma = 108.10(5) degrees, Z = 2; 3a (C(8)H(7)Fe(0.5)N(4)O(2)) is monoclinic, P2(1)/n, a = 7.4784(19) A, b = 7.604(3) A, c = 16.196(4) A, beta = 95.397(9) degrees, Z = 4; 3c (C(24)H(39)Fe(0.5)N(4)O(2)) is monoclinic, P2(1)/n, a = 9.939(6) A, b = 18.161(10) A, c = 13.722(8) A, beta = 97.67(7) degrees, Z = 4; 4b (C(20)H(35)Cl(3)FeN(5)O(2)) is monoclinic, C2/c, a = 30.45(6) A, b = 12.33(2) A, c = 16.17(3) A, beta = 118.47(5) degrees, Z = 8.  相似文献   

13.
The reactions of methylacetoacetate and ethyl 2-methylacetoacetate thiosemicarbazones (H(2)L(A) and H(2)L(B), respectively) with [ReX(CO)(5)] and [ReX(CO)(3)(CH(3)CN)(2)] (X = Cl, Br) were explored under various experimental conditions. Besides the adducts fac-[ReX(CO)(3)(H(2)L)], in which the rhenium is coordinated to three carbonyl groups, the X anion, and the N,S-bidentate thiosemicarbazone ligand, the following complexes were also isolated: fac-[ReBr(CO)(3)(Hpyz(B))], the tetrameric complexes fac-[Re(pyz(A))(CO)(3)](4) and fac-[Re(pyz(B))(CO)(3)](4), and fac-[Re(pyz(B))(CO)(3)(H(2)O)] (where Hpyz(A) and Hpyz(B) are pyrazolones derived by cyclization of H(2)L(A) and H(2)L(B), respectively). The cyclization reactions were monitored by (1)H NMR spectroscopy and the complexes isolated were identified by elemental analysis, mass spectrometry, IR and (1)H NMR spectroscopy, and in some cases by X-ray diffractometry. The isolation and the full structural identification of the rather unusual fac-[ReBr(CO)(3)(Hpyz(B))], which contains the enol form of the pyrazolone ligand, affords new insight into the cyclization of thiosemicarbazones derived from beta-keto esters.  相似文献   

14.
A homologous series of dinuclear compounds with the bridging ligand 2-(2-pyridyl)-1,8-naphthyridine (pynp) has been prepared and characterized by X-ray crystallographic and spectroscopic methods. [Mo(2)(O(2)CCH(3))(2)(pynp)(2)][BF(4)](2) x 3CH(3)CN (1) crystallizes in the monoclinic space group P2(1)/c with a = 15.134(5) A, b = 14.301(6) A, c = 19.990(6) A, beta = 108.06(2) degrees, V = 4113(3) A(3), and Z = 4. [Ru(2)(O(2)CCH(3))(2)(pynp)(2)][PF(6)](2) x 2CH(3)OH (2) crystallizes in the monoclinic space group C2/c with a = 14.2228(7) A, b = 20.3204(9) A, c = 14.1022(7) A, beta = 95.144(1) degrees, V = 4059.3(3) A(3), and Z = 4. [Rh(2)(O(2)CCH(3))(2)(pynp)(2)][BF(4)](2) x C(7)H(8) (3) crystallizes in the monoclinic space group C2/c with a = 13.409(2) A, b = 21.670(3) A, c = 13.726(2) A, beta = 94.865(2) degrees, V = 3973.9(8) A(3), and Z = 4. A minor product, [Rh(2)(O(2)CCH(3))(2)(pynp)(2)(CH(3)CN)(2)][BF(4)][PF(6)] x 2CH(3)CN (4), was isolated from the mother liquor after crystals of 3 had been harvested; this compound crystallizes in the triclinic space group, P1 with a = 12.535(3) A, b = 13.116(3) A, c = 13.785(3) A, alpha = 82.52(3) degrees, beta = 77.70(3) degrees, gamma = 85.76(3) degrees, V = 2193.0(8) A(3), and Z = 2. Compounds 1-3 constitute a convenient series for probing the influence of the electronic configuration on the extent of mixing of the M-M orbitals with the pi system of the pynp ligand. Single point energy calculations performed on 1-3 at the B3LYP level of theory lend insight into the bonding in these compounds and allow for correlations to be made with electronic spectral data. Although purely qualitative in nature, the values for normalized change in orbital energies (NCOE) of the frontier orbitals before and after reduction are in agreement with the observed differences in reduction potentials as determined by cyclic voltammetry.  相似文献   

15.
The synthesis and characterization of the dioxouranium(VI) dibromide and iodide hydrates, UO(2)Br(2)x3H(2)O (1), [UO(2)Br(2)(OH(2))(2)](2) (2), and UO(2)I(2)x2H(2)Ox4Et(2)O (3), are reported. Moreover, adducts of UO(2)I(2) and UO(2)Br(2) with large, bulky OP(NMe(2))(3) and OPPh(3) ligands such as UO(2)I(2)(OP(NMe(2))(3))(2) (4), UO(2)Br(2)(OP(NMe(2))(3))(2) (5), and UO(2)I(2)(OPPh(3))(2)(6) are discussed. The structures of the following compounds were determined using single-crystal X-ray diffraction techniques: (1) monoclinic, P2(1)/c, a = 9.7376(8) A, b = 6.5471(5) A, c = 12.817(1) A, beta = 94.104(1) degrees , V = 815.0(1) A(3), Z = 4; (2) monoclinic, P2(1)/c, a = 6.0568(7) A, b = 10.5117(9) A, c = 10.362(1) A, beta = 99.62(1) degrees , V = 650.5(1) A(3), Z = 2; (4) tetragonal, P4(1)2(1)2, a = 10.6519(3) A, b = 10.6519(3) A, c = 24.0758(6) A, V = 2731.7(1) A(3), Z = 4; (5) tetragonal, P4(1)2(1)2, a = 10.4645(1) A, b = 10.4645(1) A, c = 23.7805(3) A, V = 2604.10(5) A(3), Z = 4, and (6) monoclinic, P2(1)/c, a = 9.6543(1) A, b = 18.8968(3) A, c = 10.9042(2) A, beta =115.2134(5) degrees , V = 1783.01(5) A(3), Z = 2. Whereas 1 and 2 are the first UO(2)Br(2) hydrates and the last missing members of the UO(2)X(2) hydrate (X = Cl --> I) series to be structurally characterized, 4 and 6 contain room-temperature stable U(VI)-I bonds with 4 being the first structurally characterized room temperature stable U(VI)-I compound which can be conveniently prepared on a gram scale in quantitative yield. The synthesis and characterization of 5 using an analogous halogen exchange reaction to that used for the preparation of 4 is also reported.  相似文献   

16.
By reaction of Na2[B9H9] with the appropriate N-halogenosuccinimide, the monohalogenated anion [1-XB9H8]2- (X = Cl, Br, or I) is formed. The X-ray diffraction analyses performed on single crystals of (Ph4P)2[1-XB9H8].CH3CN (X = Cl, Br, I) reveal that the tricapped trigonal prismatic geometry of the cluster is retained after substitution in the 1-position. Crystallographic data are as follows for (Ph4P)2[1-XB9H8].CH3CN. X = Cl, Br: monoclinic, space group P2(1), a = 10.7 A, b = 32.9 A, c = 13.8 A, beta = 96 degrees, Z = 4, R1 = 0.038 and R1 = 0.036, respectively. X = I: monoclinic, space group P2(1)/n, a = 10.5 A, b = 13.6 A, c = 33.4 A, beta = 94 degrees, Z = 4, R1 = 0.094. The compounds have been characterized by vibrational and 11B NMR spectroscopy as well.  相似文献   

17.
Several rhenium(V) oxo complexes with tetradentate N(2)O(2) Schiff base ligands were synthesized and characterized. The general synthetic procedure involved reaction of [NBu(4)][ReOCl(4)] with a tetradentate Schiff base ligand (L(1) = N,N'-ethylenebis(acetylacetoneimine), (acac(2)en) or L(2) = N,N'-propylenebis(acetylacetoneimine) (acac(2)pn)) in ethanol solution to generate complexes of the form trans-ReOX(L) where X = Cl(-), MeO(-), ReO(4)(-), or H(2)O. The product isolated from the reaction was found to be dependent on the reaction conditions, in particular the presence or absence of water and/or base. The mu-oxo-Re(2)O(3)(L)(2) dimers were synthesized and characterized for chemical and structural comparison to the related monomers. Conversion of the monomer to its dimer analogue was followed qualitatively by spectrophotometry. The complexes were characterized by (1)H and (13)C NMR, UV-vis, and IR spectroscopy, elemental analysis, and single crystal X-ray diffraction. The crystallographic data reported for the structures are as follows: trans-[ReO(OH(2))(acac(2)en)]Cl (H(20)C(12)ClN(2)O(4)Re) 1, triclinic (Ponemacr;), a = 7.2888(6) A, b = 9.8299(8) A, c = 10.8195(9) A, alpha = 81.7670(10) degrees, beta = 77.1510(10) degrees, gamma = 87.6200(10) degrees, V = 747.96(11) A(3), Z = 2; trans-[ReO(OReO(3))(acac(2)en)] (H(18)C(12)N(2)O(7)Re(2)) 2, monoclinic (P2(1)/c), a = 7.5547(4) A, b = 8.7409(5) A, c= 25.7794(13) A, beta = 92.7780(10) degrees, V = 1700.34(16) A(3), Z = 4; trans-[ReOCl(acac(2)pn)] (H(20)C(13)N(2)O(3)ClRe) 3, monoclinic (P2(1)/c), a = 8.1628(5) A, b = 13.0699(8) A, c = 28.3902(17) A, beta = 97.5630(10) degrees, V = 3002.5(3) A(3), Z = 8; trans-[ReO(OMe)(acac(2)pn)] (H(23)C(14)N(2)O(4)Re) 4, monoclinic (P2(1)/c), a = 6.7104(8) A, b = 27.844(3) A, c = 8.2292(9) A, beta = 92.197(2) degrees, V = 1536.4(3) A(3), Z = 4; trans-[mu-oxo-Re(2)O(3)(acac(2)en)(2)] (H(36)C(24)N(4)O(7)Re(2)) 5, monoclinic (P2(1)/n), a = 9.0064(5) A, b = 12.2612(7) A, c = 12.3695(7) A, beta = 90.2853(10) degrees, V = 1365.94(13) A(3), Z = 2; and trans-[mu-oxo Re(2)O(3)(acac(2)pn)(2)] (H(40)C(26)N(4)O(7)Re(2)) 6, monoclinic (P2(1)/n), a = 9.1190(5) A, b = 12.2452(7) A, c = 12.8863(8) A, beta = 92.0510(10) degrees, V = 1438.01(14) A(3), Z = 2.  相似文献   

18.
Cationic Re(V) oxo compounds of the type [ReO(OSiMe3)(eta 2-B(pz)4)(L)2]X [X = Cl, L = 4-(NMe2)C5H4N (1), 1-Meimz (1-methylimidazole; 2), 1/2 dmpe (1,2-bis(dimethylphosphino)ethane; 3), py (4a); X = I, L = py (4b)] can be prepared by reacting trans-[ReO2(eta 2-B(pz)4)(L)2] with XSiMe3. In solution, cations 1-4 are reactive species, and those with unidentate nitrogen donor ligands (1, 2, and 4) rearrange into the neutral derivatives [ReO(Cl)(OSiMe3)(eta 2-B(pz)4)(L)] [L = py (5), 4-(NMe2)C5H4N (6), 1-Meimz (7)], which are also reported herein. Compounds 1-3 and 5-7 have been fully characterized by the usual spectroscopic techniques, which in some cases includes X-ray crystallographic analysis (3, 6, and 7). Compound 3 crystallizes from CH2Cl2/n-hexane as yellow crystals with one molecule of CH2Cl2 solvent, and compounds 6 and 7 crystallize from THF/n-hexane as violet and red crystals, respectively, with one molecule of THF solvent in the case of 6. Crystallographic data: 3, orthorhombic space group Pn2(1)a, a = 11.311(2) A, b = 19.135(2) A, c = 15.443(2) A, V = 3342.4(8) A3, Z = 4; 6, triclinic space group P1, a = 8.7179(11) A, b = 12.5724(8) A, c = 17.750(2) A, alpha = 70.454(7) degrees, beta = 77.935(9) degrees, gamma = 77.129(8) degrees, V = 1768.1(3) A3, Z = 2; 7, monoclinic space group P2(1)/c, a = 16.356(2) A, b = 20.384(3) A, c = 17.360(3) A, beta = 106.971(12) degrees, V = 5535.8(14) A3, Z = 8.  相似文献   

19.
The ligand substitution behavior of [ReBr3(CO)3](NEt4)2 (1) and [ReBr3(CO)2(NO)]NEt4 (2) in aqueous media was compared. Ligand exchange reactions were performed with multidentate chelating systems such as picolylaminediacetic acid (L1; N,N',O,O'), nitrilotriacetic acid (L2; N,O,O',O'), iminodiacetic acid (L3; N,O,O'), and bis(2-pyridyl)methane (L4; N,N'). The products of the substitution reactions were isolated and characterized by means of IR, NMR, MS, and X-ray structure analysis. NMR and crystallographic analyses confirmed the formation of single structural isomers in all cases with a ligand-to-metal ratio of 1:1. With ligands L1 and L2 and precursor 1 the tridentately coordinated complexes [Re(L1)(CO)3] (7) and [Re(L2)(CO)3]2- (8) were formed. With precursor 2 the same ligands unexpectedly coordinated tetradentately after displacing a CO ligand, yielding complexes [Re(L1)(CO)(NO)] (3) and [Re(L2)(CO)(NO)]- (4). In both complexes NO was found to be coordinated trans to the carboxylate group. Time-dependent IR spectra of the reaction of 2 with ligand L1 and L2 confirmed the loss of one CO during the reaction. The product of the reaction of 2 with L3 was identified as the neutral complex [Re(L3)(CO)2(NO)] (5), again, with the nitrosyl coordinated trans to the carboxylate. With 1, ligand L3 formed the anionic complex [Re(L3)(CO)3]- (9). Finally the reactions with L4 yielded the complexes [ReBr(L4)(CO)2(NO)]Br (6) and [ReBr(L4)(CO)3] (10), in which bromide was found to be coordinated trans to the NO and CO, respectively. The X-ray structures of 3, 5-7, and 10 are discussed: 3, monoclinic P2(1)/n, with a = 14.6071(6) A, b = 8.0573(3) A, c = 24.7210(11) A, beta = 107.117(5) degrees, and Z = 4; 5, triclinic P1, with a = 6.9091(5) A, b = 9.8828(7) A, c = 14.2834(10) A, alpha = 89.246(9) degrees, beta = 89.420(9) degrees, gamma = 86.196(9) degrees, and Z = 4; 6, triclinic P1, with a = 9.8236(8) A, b = 10.0949(8) A, c = 12.5346(10) A, alpha = 108.679(9) degrees, beta = 111.992(9) degrees, gamma = 95.426(10) degrees, and Z = 2; 10, monoclinic P2(1)/c, with a = 12.7491(12) A, b = 13.3015(13) A, c = 9.0112(9) A, beta = 107.195(2) degrees, and Z = 7.  相似文献   

20.
This work describes new synthetic routes to produce mixed carbonyl-nitrosyl complexes of technetium(I) and rhenium(I) in aqueous media. NaNO2, NOHSO4, and NO2(g) have been used to produce in situ nitrous acid as the primary source of NO+. Starting from the organometallic precursor fac-[MX3(CO)3]+, 1 (M = 99Tc, Re; X = Cl, Br), the formation of mixed dicarbonyl-mononitrosyl complexes was observed in aqueous hydrochloric and hydrobromic acid. Time-dependent analyses of the reactions by means of HATR-IR and 99Tc NMR spectroscopy in solution revealed the almost quantitative substitution of one CO ligand by NO+ and, thus, the formation of complexes with facial arrangement of the three pi-acceptor ligands. In the case of technetium, the monomeric complex (NEt4)[TcCl3(CO)2NO] (3a) and the dimeric, chloride-bridged, neutral complex [TcCl(mu-Cl)(CO)2NO]2 (4a) were produced. In the case of rhenium, the monomeric species (NEt4)[ReBr2X(CO)2NO] (X = Br (3b), NO3 (5)) was solely isolated. The X-ray structure of complexes 4a and 5 are discussed. The crystallographic analyses revealed the coordination of the NO+ group trans to the terminal chloride (4a) or the bromide (5), respectively. Crystal data: complex 4a (C4Cl4N2O(6)Tc2), monoclinic, Cc, a = 18.82(3) A, b = 6.103(6) A, c = 12.15(2) A, alpha = 90 degrees , beta = 105.8(2) degrees , gamma = 90 degrees , V = 1343(3) A(3), Z = 4; complex 5 (C10H20N3O(6)Br2Re), orthorhombic, P2(1)2(1)2(1), a = 10.2054(5) A, b = 12.5317(7) A, c = 13.9781(7) A, V = 1787.67(16) A(3), Z = 4. The isolated complexes and their potential facial isomers have been further investigated by density functional theory (DFT) calculations. The energy differences of the isomers are relatively small; however, the calculated energies are consistent with the formation of the observed and isolated compounds. The calculated bond lengths and angles of complex 5 are in good agreement with the data determined by X-ray diffraction. Experiments on the no-carrier-added level starting from fac-[99mTc(H2O)3(CO)3]+ revealed the formation of the complex fac-[99mTcCl(H2O)2(CO)2NO]+ in reasonable good yields. This aqueous-based, synthetic approach will enable the future evaluation of this novel, low-valent metal precursor for potential use in radiopharmacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号