首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2?:?1 (L?:?M) Complexes of 2,6-bis(hydroxymethyl)pyridine (dhmp) with different Co(II) salts [CoCl2·6H2O, Co(SCN)2, Co(NO3)2·6H2O, CoSO4·7H2O and Co(OTos)2·6H2O] and Ni(II) salts [NiCl2·6H2O, Ni(NO3)2·6H2O, NiSO4·7H2O and Ni(OTos)2·6H2O] have been prepared (19) and studied by infrared spectroscopy and X-ray crystallography. Influences on the distortion of the coordination polyhedron, the arrangement of the donor atoms and the packing structure of the complexes were investigated in terms of the different kinds of anions and cations. In the metal chloride Complexes 1 and 2, water of hydration was found, while in Complex 3 the counterion (SCN) acts as a ligand. The crystal structures of all complexes, except 3, show N2O4 hexacoordinated metal ions; in 3 the coordination environment is N4O2. Complex 1 is another exception in containing cobalt(III) instead of cobalt(II) as for the other complexes with cobalt salts. Logically, in Complex 1, one of the dhmp ligands is mono-deprotonated. In the neutral Complexes 2 and 49, the basal planes of the octahedra are made up of O donors and N atoms occupy the axial positions. In 1 as well as in 3, two N and two O atoms form the base, but in 1 O, and in 3 N atoms are on the axis of the coordination sphere. Moreover, the nickel Complexes 2, 5, 7 and 9 are more symmetrical in structure than the cobalt Complexes 1, 4, 6 and 8, in accordance with the Jahn–Teller effect. Packing structures of the complexes show specific interactions based on strong and weak H-bonds that involve the counterions, hydroxy groups and aromatic units, leading to extended network structures.  相似文献   

2.
The compound 2,6-bis(N-tert-butylacetamide)pyridine (2) was obtained via a Ritter synthesis, and oxidation with oxone provided the title pyridine-N-oxide (3). The compounds were characterized by spectroscopic methods, and the molecular structure of the N-oxide was determined by single-crystal X-ray diffraction methods. The coordination chemistry with Eu(NO3)3 was examined by using 1:1 and 2:1 ligand/Eu ratios, and a single-crystal X-ray analysis for Eu(3)(NO3)3(H2O) was completed. The ligand 3 is found to chelate in a tridentate fashion on the Eu(III).  相似文献   

3.
2,6-Bis(5-trifluoromethylpyrazol-3-yl)pyridine (H2L) and its mono-, tri-, and tetranuclear NiII complexes were synthesized for the first time. All the obtained compounds were characterized by single-crystal X-ray diffraction analysis. In the complexes, 2,6-bis(5-trifluoromethylpyrazol-3-yl)pyridine exists in the neutral and dianionic forms and exhibits different coordination modes (??3-, ??2-??3:??1-, and ??3-??3:??1:??1). The electrochemical and magnetic properties of all compounds were studied. The tetranuclear NiII complex with the L2? dianion is reduced in two sequential reversible one-electron steps.  相似文献   

4.
Ruthenium monoterpyridine complexes with the tridentate 2,6-bis(benzimidazol-2-yl)pyridine (LH2), [Ru(trpy)(LH2)]2+, [1]2+ and [Ru(trpy)(L2−)], 2 (trpy = 2,2′:6′,2″-terpyridine) have been synthesized. The complexes have been authenticated by elemental analyses, UV–Vis, FT-IR, 1H NMR spectra and their single crystal X-ray structures. Complexes [1]2+ and 2 exhibit strong MLCT band near 475 and 509 nm, respectively, and are found to be very much dependent on solution pH. The successive pH dependent dissociations of the N–H protons of benzimidazole moiety of LH2 in [1]2+ lead to the formation of 2. The proton induced inter-convertibility of [1]2+ and 2 has been monitored via UV–Vis spectroscopy and redox features. The two pKa values, 5.75 and 7.70, for complex [1]2+ have been determined spectroscopically.  相似文献   

5.
Three new mononuclear copper(II) complexes, [CuL(2-fca)(CH3OH)]ClO4?·?CH3OH (1), [CuL(m-nba)(CH3OH)]ClO4 (2), and [CuL(pic)(ClO4)]?·?CH3OH (3), were synthesized and structurally characterized, where L is 2,6-bis(benzimidazol-2-yl)pyridine, while 2-fca, m-nba, and pic are the anions of 2-furoic acid, m-nitrobenzoic acid, and picolinic acid, respectively. All of them were characterized by elemental analysis, infrared, UV-Vis, and X-ray crystallography. In 1 and 2, the Cu(II) resides within a distorted square-pyramidal N3O2 coordination sphere with three nitrogens of L, one carboxylate oxygen, and one methanol. In 3, Cu(II) is coordinated with three nitrogens of L, one nitrogen and one oxygen of picolinate, and one oxygen of perchlorate in a distorted octahedral geometry. Two molecules of 1, 2, and 3 are interacted by intermolecular hydrogen-bonding interactions and strong π–π stacking interactions to form a dinuclear structural unit. The dinuclear units are further connected by H-bonds via perchlorate or lattice methanol to form a 1-D chain for 1 and 2-D network structures for 2 and 3. Hydrogen-bonding and π–π stacking interactions are important for the stabilization of the final supramolecular structures of the three complexes.  相似文献   

6.
Summary The complexes Co(BBP)Cl2, Co(BBP)2SO4·H2O, Co(BBP)2(NO3)2·H2O, Co(BBP)2(ClO4)2 and Co(BBP−H)2· 2H2O, where BBP is 2,6-bis(benzimidazol-2′-yl) pyridine, were prepared and characterized by elemental analysis, electrical conductance, i.r. and electronic spectra. The electrochemical behaviour of the complexes was recorded and the X-ray crystal structure of Co(BBP)Cl2(MeOH)2 was determined. The geometry about cobalt is a distorted octahedron.  相似文献   

7.
8.
Reactions of 2,6-bis(bromomethyl)pyridine with 3,5-dimethylpyrazole and 1H-indazole yield the terdentate ligands 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (5) and 2,6-bis(indazol-2-ylmethyl)pyridine (6). The molecular structure of the new compound 6 was determined by single-crystal X-ray diffraction. These ligands react with the CrCl3(THF)3 complex in THF to form neutral complexes of general formula [CrCl3{2,6-bis(azolylmethyl)pyridine-N,N,N}] (7, 8) which are isolated in high yields as stable green solids and characterized by means of elemental analysis, magnetic moments, IR, and mass spectroscopy. Theoretical calculations predict that the thermodynamically preferred structure of the complexes is the fac configuration. After reaction with methylaluminoxane (MAO) the chromium(III) complexes are active in the polymerization of ethylene.  相似文献   

9.
The potentially pentadentate ligand 2,6-bis[N-(2'-pyridylmethyl)carbamyl]pyridine (H2L1), readily prepared from reaction of a diester of pyridine-2,6-dicarboxylic acid (H2dipic) and 2-aminomethylpyridine (ampy), shows limited tendency to form 1:1 M:L complexes with labile metal ions, although [CuL1] and [NiL1] were observed as minor species, the latter characterized by a crystal structure analysis. A mononuclear complex formed with inert Co(III) was characterized by a crystal structure as the neutral 1:2 complex [Co(L1)(HL1)] with two ligands acting as tridentate ligands, one coordinated by the central pyridine and its two flanking deprotonated amido groups, and the other by the central pyridine, one amido and one terminal pyridine group, with the remaining poorly coordinating protonated amide remaining unbound along with other terminal pyridine groups. Fe(III) is known to form a symmetrical 1:2 complex, but that complex is anionic due to binding of all four deprotonated amido groups; the unsymmetrical neutral Co(III) complex converts into a symmetrical anionic species only on heating for hours in aqueous base in the presence of activated carbon. The most remarkable tendency of H2L1, however, is towards the formation of robust double helical complexes: a dinuclear Cu(II) complex [Cu2L1(2)] forms, as well as a trinuclear Ni(II) complex [Ni(3)(L1)2(OAc)2(MeOH)2]. Moreover, in the presence of added H2dipic, the tetranuclear complex [Cu4(L1)2(dipic)2(OH2)2] is obtained. All helical complexes have been characterized by X-ray crystal structure analyses, and all crystals feature a racemic mixture of left- and right-handed double helices stabilized by inter-ligand pi-stacking (inter-ring distances of 3.2-3.8 A) of ligands which each span several metal ions. Using the chelating ligand pentane-2,4-dione (acac), each of the two pairs of adjacent monodentate ligands in [Ni3(L1)2(OAc)2(OH2)2] have been shown to be available for substitution without destroying the helical structure, to form [Ni3(L1)2(acac)2], also characterized by a crystal structure.  相似文献   

10.
The tridentate ligand 2,6-bis(2-benzimidazolyl)pyridine has the ability to detect toxic benzene metabolites such as phenol, hydroquinone, resorcinol, catechol and p-benzoquinone by simple techniques like UV/vis and fluorescence spectroscopy. The formation of a stable supramolecular complex between 2,6-bis(2-benzimidazolyl)pyridine and hydroquinone was confirmed by X-ray analysis.  相似文献   

11.
Eighteen trinuclear NiII2LnIII complexes of 2,6-di(acetoacetyl)pyridine (H2L) (Ln=La-Lu except for Pm) were prepared by a "one-pot reaction" of H2L, Ni(NO3)2.6H2O, and Ln(NO3)3.nH2O in methanol. X-ray crystallographic studies indicate that two L2- ligands sandwich two NiII ions with the terminal 1,3-diketonate sites and one LnIII ion with the central 2,6-diacylpyridine site, forming the trinuclear [Ni2Ln(L)2] core of a linear NiLnNi structure. The terminal Ni assumes a six-coordinate geometry together with methanol or water molecules, and the central Ln assumes a 10-coordinate geometry together with two or three nitrate ions. The [Ni2Ln(L)2] core is essentially coplanar for large Ln ions (La, Ce, Pr, Nd) but shows a distortion with respect to the two L2- ligands for smaller Ln ions. Magnetic studies for the Ni2Ln complexes of diamagnetic LaIII and LuIII indicate an antiferromagnetic interaction between the terminal NiII ions. A magnetic analysis of the Ni2Gd complex based on the isotropic Heisenberg model indicates a ferromagnetic interaction between the adjacent NiII and GdIII ions and an antiferromagnetic interaction between the terminal NiII ions. The magnetic properties of other Ni2Ln complexes were studied on the basis of a numerical approach with the Ni2La complex and analogous Zn2Ln complexes, and they indicated that the NiII-LnIII interaction is weakly antiferromagnetic for Ln=Ce, Pr, and Nd and ferromagnetic for Ln=Gd, Tb, Dy, Ho, and Er.  相似文献   

12.
The hybrid S/N/S donor ligands 2,6-bis(methylthiomethyl)pyridine (L1) and 2,6-bis(p-tolylthiomethyl)pyridine (L2) react with the [M(CO)5(THF)] (M = Mo or W) compounds to form complexes of general formula [M(CO)4L] (M = Mo, L = L2; M = W, L = L1 or L2), where both L1 and L2 act in a S/N bidentate chelate fashion. In solution, these complexes undergo three fluxional processes, viz. inversion at the coordinated S atom, S1–S2 switching, and combined inversion and S1–S2 switching, leading to an interconversion of the four possible permutational isomers. Energy barriers for all three processes have been evaluated by standard one-dimensional band-shape analysis techniques. The mechanism of the S1–S2 switch is discussed.  相似文献   

13.
Synthesis and characterization of new (PONOP) [2,6-bis(di-tert-butylphosphinito)pyridine] metal (Ni, Pd, Pt) complexes are reported. Surprisingly, these compounds [(PONOP)MCl]Cl in the presence of 1 equiv of superhydride (LiEt(3)BH) formed a new class of complexes (H-PONOP)MCl, in which the pyridine ring in the PONOP ligand lost its aromaticity as a result of hydride attack at the para position of the ring. The new Ni-H compound [(H-PONOP)NiH] was synthesized by reacting (H-PONOP)NiCl with 1 equiv of superhydride. Analogous Pd and Pt compounds were prepared. Reactivity of these new pincer complexes toward MeLi and PhLi also has been studied. These Ni complexes catalyzed the hydrosilylation of aldehyde. In some cases characterization of new (PONOP)M complexes was difficult because of high instability due to degradation of the P-O bond.  相似文献   

14.
Two mononuclear five-coordinated transition metal complexes FeLCl2 (I) and MnLCl2 (II) containing tridentate 2,6-bis(6-methylquinolin-2-yl)pyridine ligand (L) have been synthesized and characterized by single-crystal X-ray crystallography. In the complexes, the metal center was tridentately chelated by ligand and further coordinated by two chlorine atoms, resulting in distorted trigonal-bipyramidal geometry for complex I and II, respectively. In addition, crystal packing in complex is stabilized by C-H?Cl intermolecular hydrogen bond, which link the mononuclear complex to the 1D chain.  相似文献   

15.
Molybdenum-95 NMR chemical shifts are reported for a series of Mo(O) compounds of the type Mo(CO)5L (L = pyridine derivatives). A good correlation is found between the δ(95Mo) values and the Hammett sigma constant of the pyridine substituent or the pKa of the substituted pyridine. The chemical shift values, which range from −1366 ppm (3-CN, σ = 0.62, pKa = 1.35) to −1433 ppm (4-NMe2, σ = −0.83, pKa = 9.61), directly reflect the electronic properties of the pyridine derivatives even though the substituent is four or five bonds away from the molybdenum atom.  相似文献   

16.
Wang X  Wang S  Li L  Sundberg EB  Gacho GP 《Inorganic chemistry》2003,42(24):7799-7808
Iron complexes including polyimidazole and exchangeable ligands are studied with the aim of modeling the structural and functional features of the non-heme iron centers of dinuclear proteins, such as methane monooxygenase. In [Fe(2)OL(2)(MeOH)(2)(NO(3))(2)](NO(3))(2) (1) (L = 2,6-bis(N-methylbenzimidazol-2-yl)pyridine), each Fe(III) is in a distorted octahedral environment and has a donor set of N(3)O(3) which includes three N atoms from L and three O atoms from a nitrate, micro-oxo, and methanol. In complex [FeLCl(3)] (2) (L = 2,6-bis(N-methylbenzimidazol-2-yl)pyridine), Fe(III) is coordinated to three nitrogen atoms from L and three chloride ions. Complex 1 efficiently catalyzed the oxidation of cyclohexane with 51% conversion to cyclohexanol. It also catalyzed the epoxidation of styrene, cyclohexane, 2-methyl-2-butene, and cis- and trans-2-heptene with 51-84% conversions and high selectivity (71-99%) for epoxide products. Complex 2, however, has no specific reactivity toward these substrates. From the alcohol/ketone (A/K) ratio close to 1 in the oxidation of cyclohexane, the low KIE (kinetic isotope effect K(H)/K(D) ratio = 1.8) for cyclohexanol formation, and the nonstereospecificity of the oxidation of cis-dimethylcyclohexane, it can be concluded that long-lived alkyl radicals are involved in the oxidation catalyzed by complex 1. On the other hand, the stereospecific epoxidation of alkenes, the stereoselective oxidation of cumene, and the high degree of retention of configuration in the oxidation of cis- and trans-2-heptene suggest that a nonradical species, probably a metal-based intermediate, is involved in the oxidation of alkenes and cumene.  相似文献   

17.
《Polyhedron》2003,22(14-17):2375-2380
Iron (II), cobalt (II) and nickel (II) complexes of 2,6-bis(pyrazol-3-yl)pyridine (bpp) with [Cr(C2O4)3]3− have been prepared. They were characterised by single-crystal X-ray diffraction, magnetic susceptibility measurements and thermal gravimetric analyses. All three compounds are isostructural and they are formed by isolated [MII(bpp)2]2+ and [Cr(C2O4)3]3− complexes and free ClO4 . As expected, only the salt [Fe(bpp)2]2[Cr(C2O4)3]ClO4·5H2O shows a thermal spin transition with transition temperature (T1/2) around 375 K that is correlated to the loss of water molecules.  相似文献   

18.
19.
Three cobalt(II) - benzoato (bz) complexes have been prepared and structurally characterized. In the mononuclear complex trans-[Co(bz)2(H2O)2(nca)2] the benzoato ligand is unidentate (nca = nicotinamide). The dinuclear complex [(μ2-bz)4{Co(qu)}2] is a structural analog of the copper acetate (qu = quinoline) where four bidentate benzoato ligands link two cobalt(II) pentacoordinate centers. The trinuclear complex of the composition [Co3(bz)6(inca)6] contains a central hexacoordinate {(bz)2Co(inca)2(bz)2} unit in which the bidentate benzoato ligands held the central and peripheral cobalt(II) centers (inca = iso-nicotinamide); the peripheral hexacoordinate {(bz)Co(inca)2<} units contain the terminal benzoato ligand in its bidentate function. The magnetic susceptibility data down to T = 2 K and the magnetization data up to B = 7 T reveal a considerable magnetic anisotropy due to the single-ion zero-field splitting.  相似文献   

20.
Ruthenium monoterpyridine complexes, [1]+ and [2]2+, with 2,6-bis(benzoxazol-2-yl)pyridine as an ancillary ligand, L, have been synthesized and characterized by UV–Vis, FT-IR and 1H NMR spectroscopic techniques. The formulations of the complexes were confirmed by the single crystal structure of their perchlorate salts. In both complexes, the RuII center is hexa-coordinated in a distorted geometry. In complex [1]+, the ancillary ligand L behaves as a bidentate ligand; in [2]2+, however, it binds the metal center as a tridentate ligand. The central pyridine nitrogen of terpyridine (Np,trpy) is in a cis position with respect to the central pyridine nitrogen of the ancillary ligand (Np,benz) in complex [1]+ and in a trans-position in complex [2]2+. The cis orientation of Np,trpy and Np,benz in complex [1]+ forces L to behave as bidentate. The quasi-reversible RuII/RuIII couple appears at 0.90 and 1.44 V versus SCE in the case of complex [1]+ and [2]2+, respectively. [1]+, in the presence of aqueous AgNO3, affords [2]2+ through an intramolecular dissociative interchange pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号