首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A brief review of the surface tension of polymer liquids is presented. A strong emphasis is placed on recent measurements of surface tensions of homologous liquid series up to high-molecular-weight polymers, and the thermodynamic liquid properties of these same homologous series obtained from sources such as pressure-volume-temperature (PVT) data. The accuracy and limitations of the thermodynamic information which are used as input to many of the theories applied to the surface properties of polymer molecules are discussed. By scaling the surface tension data using a true measure of the cohesive energy density of the liquid state, we can clearly observe the entropic contribution to the surface tension caused by the conformational restriction of a large molecule at the liquid-vapor interface. The scaling implies the existence of a corresponding states principle for both polymer liquids and for low-molecular-weight liquids. The ramifications of the existence of a corresponding states principle for the surface tension of polymer melts are discussed. One consequence of the corresponding states principle is that it allows us to use surface tension measurements to compute the cohesive energy density of polymer melts using PVT data.  相似文献   

2.
3.
An effort to systematize published and new data on the surface tension gamma of ionic liquids (ILs) is based on the hypothesis that the dimensionless surface tension parameter gamma V v (2/3)/ kT is a function of the void fraction x v = V v/ V m. The void volume V v is defined as the difference between the liquid volume V m occupied by an ion pair (known from cationic and anionic masses and liquid density measurements) and the sum V (+) + V (-) of the cationic and anionic volumes (known from crystal structures), while kT is the thermal energy. Our hypothesis that gamma V m (2/3)/ kT = G( x v) is initially based on cavity theory. It is then refined based on periodic lattice modeling, which reveals that the number N of voids per unit cell (hence the dimensionless surface tension) must depend on x v. Testing our hypothesis against data for the five ILs for which surface tension and density data are available over a wide range of temperatures collapses all of these data almost on a single curve G( x v), provided that slight (4%) self-consistent modifications are introduced on published crystallographic data for V (+) and V (-). An attempt to correlate the surface tension vs temperature data available for inorganic molten salts is similarly successful, but at the expense of larger shifts on the published ionic radii (8.8% for K; 3.3% for I). The collapsed G( x v) curves for ILs and inorganic salts do not overlap anywhere on x v space, and appear to be different from each other. The existence of a relation between gamma and x v is rationalized with a simple capillary model minimizing the energy. Our success in correlating surface tension to void fraction may apply also to other liquid properties.  相似文献   

4.
《Thermochimica Acta》1986,103(1):107-112
Surface tension measurements by the Wilhelmy plate method are being done at our laboratory using an automatic balance. Surface-active material (surfactant) is spread as a monolayer on an air-water interface and a Pt plate, suspended from a micro-balance, is brought vertically into contact with the interface. The water is contained in a trough, two opposite sides of which can move independently, one producing a large variation in surface area and the other generating a longitudinal wave in the monolayer. This set-up is a new, asymmetric variant of the Benjamins-De Feyter method. Results of measurements on visco-elastic interfacial properties of model compounds of lung surfactant are reported.  相似文献   

5.
We report molecular dynamics computer simulations of the surface tension and interfacial thickness of ionic liquid-vapor interfaces modeled with a soft core primitive model potential. We find that the surface tension shows an anomalous oscillatory behavior with interfacial area. This observation is discussed in terms of finite size effects introduced by the periodic boundary conditions employed in computer simulations. Otherwise we show that the thickness of the liquid-vapor interface increases with surface area as predicted by the capillary wave theory. Data on the surface tension of size-asymmetric ionic liquids are reported and compared with experimental data of molten salts. Our data suggest that the surface tensions of size-asymmetric ionic liquids do not follow a corresponding states law.  相似文献   

6.
A correction to the association of saturation vapor molecules is introduced into the theory of microscopic surface tension proposed by Sinanoglu. It is determined that the calculated solubility of benzene in water coincides with the one measured using this correction.  相似文献   

7.
8.
It is shown that the Nakanishi-Jean formulae for o-Ps lifetime vs. radius of spherical cavity gives the empirical relationship of Tao which links the o-Ps annihilation rate with macroscopic surface tension.  相似文献   

9.
Viscosities of ionic liquids were correlated with two linear relations. The first one presents the temperature dependence of imidazolium-, pyridinium-, pyrrolidinium-, quaternary ammonium-, and nicotinium-based ionic liquids with high accuracy. The second one is a linear relation between logarithm of surface tension and fluidity involving the characteristic exponent ?, and fits the ionic liquids uniquely with ? = 0.30. Our previously measured surface tension data of ionic liquids and literature's were used in this study. The dependence of surface tension–fluidity relation of the imidazolium-based ionic liquids on the anion type is likely disappeared as alkyl chain length increases.  相似文献   

10.
11.
The spontaneous spreading of ionic liquids on a fluoropolymer surface (Teflon AF1600) in air is investigated by high-speed video microscopy. Six ionic liquids (EMIM BF(4), BMIM BF(4), OMIM BF(4), EMIM NTf(2), BMIM NTf(2) and HMIM NTf(2)) are used as probe liquids. The dependence of the dynamic contact angle on contact line velocity is interpreted with a hydrodynamic model and a molecular-kinetic model. The usefulness of the hydrodynamic model is rather limited. There is a good correspondence between the molecular dimensions of the liquids and the physical parameters of the molecular-kinetic model. The viscous and molecular-kinetic contributions to energy dissipation are calculated, revealing that energy is dissipated in the bulk as well as at the contact line during dynamic wetting. There are wide ramifications of these results in areas ranging from lubrication and biology to minerals processing and petroleum recovery.  相似文献   

12.
Correlation relations based on Stefan's rule, which defined dependence between the enthalpy of vaporization, the surface tension, the molar volume and the molar mass of a substance, were obtained. For development of the correlation equations two computational procedures were used: a method of the least squares and a method of artificial neural networks. The method of artificial neural networks was shown to give somewhat better results than the linear least-squares procedure. The average deviation of the calculated values from the experimental ones did not exceed 6% for training set of substances and 10% for control set (the method of the least squares). For the method of artificial neural networks it is 3% and 8%, respectively.  相似文献   

13.
We have reviewed recent model theories of the surface tension and examined the data on the temperature dependence of the surface tension of elemental liquids. From this, we have been able to show that the surface tension of these liquids vary linearly with temperature with the linear coefficient being related to both the transition temperatures at melting and at boiling. We use this to show that the boiling transition temperature may be expressed in a form which was previously proposed by us in a general phenomenological theory of phase transitions involving quasi-particles.  相似文献   

14.
First, a novel calibration method is used to expand the current understanding of spherical drop growth and elongation that occurs during on-line measurements of surface pressure using the dynamic surface tension detector (DSTD). Using a novel surface tension calibration method, the drop radius is calculated as a function of time from experimental drop pressure data and compared to the theoretical drop radius calculated from volumetric flow rate. From this comparison, the drop volume at which the drop shape starts to deviate ( approximately 4 mul) from a spherical shape is readily observed and deviates more significantly by approximately 6 mul drop volume (5% deviation in the ideal spherical drop radius) for the capillary sensing tip employed in the DSTD. From this assessment of drop shape, an experimental method for precise drop detachment referred to as pneumatic drop detachment is employed at a drop volume of 2 mul (two second drops at 60 mul/min) in order to provide rapid dynamic surface tension measurements via the novel on-line calibration methodology. Second, the DSTD is used to observe and study kinetic information for surface-active molecules and association complexes adsorbing to an air-liquid drop interface. Dynamic surface tension measurements are made for sodium dodecyl sulfate (SDS) in the absence and presence of either tetra butyl ammonium (TBA) or chromium (III). Sensitive, indirect detection of chromium and other multiply charged metals at low concentrations is also investigated. The DSTD is utilized in examining the dynamic nature of SDS: cation association at the air-liquid interface of a growing drop. Either TBA or Cr(III) were found to substantially enhance the surface tension lowering of dodecyl sulfate (DS), but the surface tension lowering is accompanied by a considerable kinetic dependence. Essentially, the surface tension lowering of these DS: cation complexes is found to be a fairly slow process in the context of the two second DSTD measurement. The limit of detection for both SDS and chromium (III) is in the 300-400 part-per-billion (by mass) range.  相似文献   

15.
A method was proposed for calculation of the temperature dependence of the surface tension using a single experimental characteristic of a substance, its boiling point.  相似文献   

16.
A thermodynamic method for computing the surface tension at a flat liquid-vapor interface by the Monte Carlo or molecular dynamics methods over a wide temperature range was proposed. The approach is based on the Gibbs separating surface method; it does not require information on the mechanical state of the surface layer.  相似文献   

17.
A method to determine the microscopic surface tension of nanobubbles is presented, based on the combination of positron lifetime and ACAR spectroscopies.  相似文献   

18.
刘国杰  胡英 《化学学报》1989,47(10):935-940
在利用Onsager模型推导液体表面张力与内压间的关系时, 文献[4]忽视了曲率对表面张力的影响, 致使计算值与实验值的偏差较大。本文对此作了修正, 建立了一个新的关系式, 用实验数据检验表明, 它能满意地适用于广阔温度范围内的各种液体。  相似文献   

19.
The surface properties of a nonionic photoresponsive surfactant that incorporates the light-sensitive azobenzene group into its tail have been investigated. Cis-trans photoisomerization of this azobenzene group alters the ability of the surfactant to pack into adsorbed monolayers at an air/water interface or into aggregates in solution, thereby causing a significant variation in surface and bulk properties following a change in the illumination conditions. NMR studies indicate that a solution left in the dark for an extended period of time contains the trans isomer almost exclusively, whereas samples exposed to light of fixed wavelength eventually reach a photostationary equilibrium in which significant amounts of both isomers are present. At concentrations well above the cmc but under different illumination conditions (dark, UV light, visible light), freshly formed surfaces exhibit profoundly different surface tension trajectories as they approach essentially identical equilibrium states. This common equilibrium state corresponds to a surface saturated with the trans (more surface active) isomer. The dark sample shows a simple, single-step relaxation in surface tension after the creation of a fresh interface, whereas the UV and visible samples exhibit a more rapid initial decrease in tension, followed by a plateau of nearly constant tension, and finally end with a second relaxation to equilibrium. It is hypothesized that this behavior of the UV and visible samples is caused by competitive adsorption between the cis and trans isomers present in these mixtures. The cis surfactant reaches the interface more quickly, leading to an initially cis-dominated interface having a tension value corresponding to the intermediate plateau, but is ultimately displaced by the trans isomer. Fluorescence studies are used for cmc determination in the samples, and the results suggest that the two isomers segregate into distinct aggregate phases. The critical concentration associated with the formation of cis-rich aggregates is much larger than that of the trans-rich aggregates, which accounts for the faster diffusion of the cis isomer to a fresh interface. Models of the diffusion and adsorption of surfactant are developed. These consider the role of aggregates in the adsorption process by examining the limiting behavior of three aggregate properties: dissolution rate, mobility, and ability to incorporate into the interface. These models are used to analyze the surface tension relaxation of dark and UV samples, and the predictions are found to be in agreement with the observed characteristic relaxation time scales for these samples, though the results are inconclusive regarding the specific role of aggregates. High-intensity illumination focused on a surface saturated with surfactant is used to drive photoisomerization of the adsorbed surfactant, and rapid, substantial changes in surface tension result. These changes are consistent with proposed conformations of the adsorbed surfactant and with monolayer studies performed with a Langmuir film balance.  相似文献   

20.
Recent advances in understanding dynamic surface tensions (DSTs) of surfactant solutions are discussed. For pre-CMC solutions of non-ionic surfactants, theoretical models and experimental evidence for a mixed diffusion-kinetic adsorption mechanism are covered. For micellar solutions of non-ionics, up to approximately 100 x CMC, the DST behaviour can also be accounted for using a mixed mechanism model. Finally, the first reported measurements of the dynamic surface excess Gamma(t), using the overflowing cylinder in conjunction with neutron reflection, are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号