首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The thermal and light induced spin transition in [Fe(0.35)Ni(0.65)(mtz)(6)](ClO(4))(2) (mtz = 1-methyl-1H-tetrazole) was studied by (57)Fe M?ssbauer spectroscopy and magnetic susceptibility measurements. In addition to the spin transition of the iron(II) complexes the compound undergoes a structural phase transition. The high-temperature structure could be determined by X-ray crystallography of the isomorphous [Fe(0.25)Ni(0.75)(mtz)(6)](ClO(4))(2) complex at room temperature. The X-ray structural analysis shows this complex to be rhombohedric, space group R&thremacr;, with a = 10.865(2) ? and c = 23.65(1) ? with three molecules in the unit cell. The transition to the low-temperature structure occurs at approximately 60 K without changing the spin state of the molecules. By subsequent heating of the complex the high-temperature structure is reached again between ca. 170 and 200 K. The spin transition behavior is strongly influenced by the structural changes, and the observed spin transition curves are completely different for the high- and low-temperature phases. In the high-temperature structure a complete and gradual spin transition between 220 and 120 K (T(1/2)(gamma(HS) = 0.5) = 185 K) is detected; the high-spin (HS) state is represented by one HS doublet in the M?ssbauer spectra. In the low-temperature structure a two-step transition curve is detected in the heating mode. About 36% of the molecules show a LS (low-spin) --> HS transition between ca 50 and 75 K. Then the HS fraction stays constant up to 150 K. A further increase in the high-spin fraction is observed at temperatures above 150 K. In this structural phase the HS state is represented by two different HS doublets in the M?ssbauer spectra. The formation of metastable HS states by making use of the LIESST effect is only possible in the low-temperature structure. By excitation of the LS molecules with green light, two different HS states are populated which show very different relaxation behavior. One HS state shows a relaxation to the LS state even at 10 K; the other HS state shows a very slow HS --> LS relaxation at 60 K (within days), leading to the HS fraction corresponding to the thermal equilibrium value.  相似文献   

7.
Isolation of the free bicyclic tetraamine, [3(5)]adamanzane.H(2)O (1,5,9,13-tetraazabicyclo[7.7.3]nonadecane.H(2)O), is reported along with the synthesis and characterization of a copper(II) complex of the smaller macrocycle [(2.3)(2).2(1)]adamanzane (1,5,9,12-tetraazabicyclo[7.5.2]hexadecane) and of three cobalt(II), four nickel(II), one copper(II), and two zinc(II) complexes with [3(5)]adamanzane. For nine of these compounds (2-8, 10b, and 12) the single-crystal X-ray structures were determined. The coordination geometry around the metal ion is square pyramidal in [Cu([(2.3)(2).2(1)]adz)Br]ClO(4) (2) and trigonal bipyramidal in the isostructural structures [Cu([3(5)]adz)Br]Br (3), [Ni([3(5)]adz)Cl]Cl (5), [Ni([3(5)]adz)Br]Br (6), and [Co([3(5)]adz)Cl]Cl (8). In [Ni([3(5)]adz)(NO(3))]NO(3) (4) and [Ni([3(5)]adz)(ClO(4))]ClO(4) (7) the coordination geometry around nickel(II) is a distorted octahedron with the inorganic ligands at cis positions. The coordination polyhedron around the metal ion in [Co([3(5)]adz)][ZnCl(4)] (10b) and [Zn([3(5)]adz)][ZnCl(4)] (12) is a slightly distorted tetrahedron. Anation equilibrium constants were determined spectrophotometrically for complexes 2-6 at 25 and 40 degrees C and fall in the region 2-10 M(-1) for the halide complexes and 30-65 M(-1) for the nickel(II) nitrate complex (4). Rate constants for the dissociation of the macrocyclic ligand from the metal ions in 5 M HCl were determined for complexes 2, 3, 5, 8, 10, and 12. The reaction rates vary from half-lives at 40 degrees C of 14 min for the dissociation of the Zn([3(5)]adz)(2+) complex (12) to 14-15 months for the Ni([3(5)]adz)Cl(+) ion (5).  相似文献   

8.
The complexes of general formula [ML]2[Mn(NCS)4](ClO4)2 (where M = Cu(II), Ni(II); L = N-dl-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene) were obtained and the crystal structures of both heteronuclear compounds were determined at 173 K. Complex [CuL]2[Mn(NCS)4](ClO4)2 (1) crystallizes in a monoclinic space group, C2/c, with a = 41.297(9) A, b = 7.571(2) A, c = 16.417(4) A, beta = 96.97(15) degrees, Z = 8, whereas complex [NiL]2[Mn(NCS)4](ClO4)2.H2O (2) crystallizes in a monoclinic space group, P2/c, with a = 21.018(5) A, b = 7.627(2) A, c = 16.295(4) A, beta = 104.47(1) degrees, Z = 4. The magnetic behaviour of (1) and (2) has been investigated over the temperature range 1.8-300 K. Complex (1) displays ferromagnetic coupling inside the trinuclear core of CuMnCu and compound (2) behaves like a mononuclear Mn(II) system. The magnetic properties of the second compound (2) with a similar trinuclear structure shows that Ni(II) ions have a diamagnetic character and a rather weak zero-field splitting at the central Mn(II) ion occurs. Finally, the magnitudes of the Cu(II)-M(II) interactions with M = Ni and Mn have been compared and qualitatively justified.  相似文献   

9.
The interaction with Cu2+ and dopamine of three polyazacyclophanes containing pyrazole fragments as spacers is described. Formation of mixed complexes Cu2+-macrocycle-dopamine has been studied by potentiometric methods in aqueous solution. The crystal structures of the complexes [Cu2(L1)(H2O)2](ClO4)4*2H2O (4) (L1 = 13,26-dibenzyl-3,6,9,12,13,16,19,22,25,26-decaazatricyclo[22.2.1.1(11,14)]octacosa-1(27),11,14(28),24-tetraene) and [Cu2(H-1L3)](HClO4)(ClO4)2*2H2O (6) (L3 = 1,4,7,8,11,14,17,20,21,24,29,32,33,36-tetradecaazapentacyclo[12.12.12.1(6,9).1(19,22).1(31,34)]hentetraconta-6,9(41),19(40),21,31,34(39)-hexaene) are presented. In the first one (4), each Cu2+ coordination site is made up by the three nitrogens of the polyamine bridge, a sp2 pyrazole nitrogen and one water molecule that occupies the axial position of a square pyramid. The distance between the copper ions is 6.788(2) A. In the crystal structure of 6, the coordination geometry around each Cu2+ is square pyramidal with its base being formed by two secondary nitrogens of the bridge and two nitrogen atoms of two different pyrazolate units which act as exobidentate ligands. The axial positions are occupied by the bridgehead nitrogen atoms; the elongation is more pronounced in one of the two sites [Cu(1)-N(1), 2.29(2) A; Cu(2)-N(6), 2.40(1) A]. The Cu-N distances involving the deprotonated pyrazole moieties are significantly shorter than those of the secondary nitrogens. The Cu(1)...Cu(2) distance is 3.960(3) A. The pyrazole in the noncoordinating bridge does not deprotonate and lies to one side of the macrocyclic cavity. One of the aliphatic nitrogens of this bridge is protonated and hydrogen bonded to a water molecule, which is further connected to the sp2 nitrogen of the pyrazole moiety through a hydrogen bond. The solution studies reveal a ready deprotonation of the pyrazole units induced by coordination to Cu2+. In the case of L2 (L2 = 3,6,9,12,13,16,19,22,25,26-decaazatricyclo[22.2.1.1(11,14)]octacosa-1(27),11,14(28),24-tetraene), deprotonation of both pyrazole subunits is already observed at pH ca. 4 for 2:1 Cu2+:L2 molar ratios. All three free receptors interact with dopamine in aqueous solution. L3 is a receptor particularly interesting with respect to the values of the interaction constants over five logarithmic units at neutral pH, which might suggest an encapsulation of dopamine in the macrocyclic cage. All three receptors form mixed complexes Cu2+-L-dopamine. The affinity for the formation of ternary dopamine complexes is particularly high in the case of the binuclear Cu2+ complexes of the 1-benzyl derivative L1.  相似文献   

10.
A new nickel(Ⅱ) coordination complex [Ni(2,2'-bipy)2(ClC6H4COO)(H2O)](ClO4) was synthesized by self-assembly reaction of m-chlorobenzoic acid, 2,2'-bipy and Ni(ClO4)2(6H2O. The crystal of the title compound belongs to monoclinic system, space group P21/n with a = 0.77764(14), b = 2.6572(5), c = 1.3637(2) nm, β = 96.456(3)°, V = 2.8000(9) nm3, Dc = 1.528 g/cm3, Z = 4, Mr = 644.10, μ(MoKα) = 0.937 mm-1, F(000) =1320, R = 0.0549 and wR = 0.1164. Structure analysis shows that the nickel(Ⅱ) ion is coordinated with four nitrogen atoms from two bipys as well as two oxygen atoms from m-chlorobenzoic acid and water, respectively, giving a distorted octahedral coordination geometry. The cyclic voltametric behavior of the complex is also presented.  相似文献   

11.
We present studies of the resonance Raman and electronic luminescence spectra of the [Au(2)(dmpm)(3)](ClO(4))(2) (dmpm = bis(dimethylphosphine)methane) complex, including excitation into an intense band at 256 nm and into a weaker absorption system centered about approximately 300 nm. The resonance Raman spectra confirm the assignment of the 256 nm absorption band to a (1)(dsigma --> psigma) transition, a metal-metal-localized transition, in that nu(Au-Au) and overtones of it are strongly enhanced. A resonance Raman intensity analysis of the spectra associated with the 256 nm absorption band gives the ground-state and excited-state nu(Au-Au) stretching frequencies to be 79 and 165 cm(-1), respectively, and the excited-state Au-Au distance is calculated to decrease by about 0.1 A from the ground-state value of 3.05 A. The approximately 300 nm absorption displays a different enhancement pattern, in that resonance-enhanced Raman bands are observed at 103 and 183 cm(-1) in addition to nu(Au-Au) at 79 cm(-1) The compound exhibits intense, long-lived luminescence (in room-temperature CH(3)CN, for example, tau = 0.70 micros, phi(emission) = 0.037) with a maximum at 550-600 nm that is not very medium-sensitive. We conclude, in agreement with an earlier proposal of Mason (Inorg. Chem. 1989, 28, 4366-4369), that the lowest-energy, luminescent excited state is not (3)(dsigma --> psigma) but instead derives from (3)(d(x2-y2,xy --> psigma) excitations. We compare the Au(I)-Au(I) interaction shown in the various transitions of the [Au(2)(dmpm)(3)](ClO(4))(2) tribridged compound with previous results for solvent or counterion exciplexes of [Au(2)(dcpm)(2)](2+) salts (J. Am. Chem. Soc. 1999, 121, 4799-4803; Angew. Chem. 1999, 38, 2783-2785; Chem. Eur. J. 2001, 7, 4656-4664) and for planar, mononuclear Au(I) triphosphine complexes. It is proposed that the luminescent state in all of these cases is very similar in electronic nature.  相似文献   

12.
Smith DM  Park CW  Ibers JA 《Inorganic chemistry》1996,35(23):6682-6687
2.2.2-Cryptand(1+) salts of the [Sb(2)Se(4)](2)(-), [As(2)S(4)](2)(-), [As(10)S(3)](2)(-), and [As(4)Se(6)](2)(-) anions have been synthesized from the reduction of binary chalcogenide compounds by K in NH(3)(l) in the presence of the alkali-metal-encapsulating ligand 2.2.2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane), followed by recrystallization from CH(3)CN. The [Sb(2)Se(4)](2)(-) anion, which has crystallographically imposed symmetry 2, consists of two discrete edge-sharing SbSe(3) pyramids with terminal Se atoms cis to each other. The Sb-Se(t) bond distance is 2.443(1) ?, whereas the Sb-Se(b) distance is 2.615(1) ? (t = terminal; b = bridge). The Se(b)-Sb-Se(t) angles range from 104.78(4) to 105.18(5) degrees, whereas the Se(b)-Sb-Se(b) angles are 88.09(4) and 88.99(4) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 337 and 124 ppm, 1:1 intensity, -30 degrees C, CH(3)CN/CD(3)CN). Similar to this [Sb(2)Se(4)](2)(-) anion, the [As(2)S(4)](2)(-) anion consists of two discrete edge-sharing AsS(3) pyramidal units. The As-S(t) bond distances are 2.136(7) and 2.120(7) ?, whereas the As-S(b) distances range from 2.306(7) to 2.325(7) ?. The S(b)-As-S(t) angles range from 106.2(3) to 108.2(3) degrees, and the S(b)-As-S(b) angles are 88.3(2) and 88.9(2) degrees. The [As(10)S(3)](2)(-) anion has an 11-atom As(10)S center composed of six five-membered edge-sharing rings. One of the three waist positions is occupied by a S atom, and the other two waist positions feature As atoms with exocyclic S atoms attached, making each As atom in the structure three-coordinate. The As-As bond distances range from 2.388(3) to 2.474(3) ?. The As-S(t) bond distances are 2.181(5) and 2.175(4) ?, and the As-S(b) bond distance is 2.284(6) ?. The [As(4)Se(6)](2)(-) anion features two AsSe(3) units joined by Se-Se bonds with the two exocyclic Se atoms trans to each other. The average As-Se(t) bond distance is 2.273(2) ?, whereas the As-Se(b) bond distances range from 2.357(3) to 2.462(2) ?. The Se(b)-As-Se(t) angles range from 101.52(8) to 105.95(9) degrees, and the Se(b)-As-Se(b) angles range from 91.82(7) to 102.97(9) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 564 and 317 ppm, 3:1 intensity, 25 degrees C, DMF/CD(3)CN).  相似文献   

13.
2,2,2-Tris(diphenylphosphinomethyl)ethane (triphos) coordinates to Co(BF4)2 · 6H2O giving red-violet intermediate [Co(triphos)(S)2](BF4)2 (S = solvent) in THF/EtOH. The addition of an equimolar amount of chiral amino alcohol (L-alaninol, S-2-phenylglycinol, R-1-amino-2-propanol and (±)-2-amino-1-phenyl-ethanol) and Na(OH) into this solution affords the green [Co(triphos)(chiral amino alcoholato)](BF4) complexes. The addition of equimolar Na(BPh4) precipitates the deep green [Co(triphos)(L-alaninolato)](BPh4) (1), [Co(triphos)(S-2-phenylglycinolato)](BPh4) (2), [Co(triphos)(R-1-amino-2-propanolato)](BPh4) (3), and [Co(triphos)((±)-2-amino-1-phenyl-ethanolato)](BPh4) (4) complexes, respectively. The complexes are isolated in good yields and characterized by elemental analysis, IR-, UV-Vis-, 1H-/31P-NMR- and mass-spectroscopy. 1H-/31P-NMR results show the paramagnetic nature of the complexes and magnetic moment values are μexptl(µB) = 3.65 (1), 3.78 (2), 3.82 (3), and 3.71µB (4) in methanol at 25 °C.  相似文献   

14.
Koo JE  Kim DH  Kim YS  Do Y 《Inorganic chemistry》2003,42(9):2983-2987
Cyano-bridged homometallic complex [Ni(baepn)(CN)](n)(ClO(4))(n)(1) and bimetallic complex [Ni(baepn)](2)(n)[Fe(CN)(6)](n)(H(2)O)(8)(n)(2) [baepn = N,N'-bis(2-aminoethyl)-1,3-propanediamine] were synthesized and characterized. 1 crystallizes in the monoclinic space group P2(1)/n with a = 9.560(3) A, b = 10.700(3) A, c = 14.138(9) A, beta = 90.18(6) degrees, and Z = 4; 2 crystallizes in the monoclinic space group P2(1)/c with a = 8.951(2) A, b = 13.672(3) A, c = 14.392(3) A, beta = 98.906(4) degrees, and Z = 4. The complex 1 has one-dimensional structure whose chain vector runs along the b axis with baepn ligands and perchlorate anions alternately arranged up and down in the c direction. The antiferromagnetic nature of 1 was explained in terms of the infinite chain model and Haldane gap, giving g = 2.33, J = -29.4 cm(-1), and the magnitude of Haldane gap E(g) = 5.22 K. The complex 2 that constitutes the first example of 2-D bimetallic assembly of Ni(II) ion and ferrocyanide anion is composed of the neutral layers based on the [Ni(4)Fe(4)] square grid spanning in the bc plane. For 2, the analysis with the Curie-Weiss law in 2-300 K range results in THETA = 0.200 K and the magnetism was explained in terms of the ability of ferrocyanide in the -Ni-NC-Fe-CN-Ni unit to promote ferromagnetic Ni-Ni interaction.  相似文献   

15.
《Polyhedron》2001,20(7-8):695-702
Three Co(III) complexes of the type [Co(salophen)(amine)2]ClO4, salophen=N,N′-disalicylidene-1,2-phenylendiamine dianion and amine=morpholine (1), pyrrolidine (2), and piperidine (3), have been synthesized and characterized by elemental analysis, IR, UV–Vis, 1H, and 13C NMR spectroscopy. [Co(salophen)(morpholine)2]ClO4 (1) and [Co(salophen)(pyrrolidine)2]ClO4 (2) have been studied by X-ray diffraction. Compound 1 crystallizes in ribbons of complexes and perchlorates held together by weak NH⋯O and CH⋯O hydrogen bonds between morpholines and perchlorates. The latter also interconnect the chains to a 3D network. Some minor π–π interactions exist. Compound 2 crystallizes as endless chains of complexes linked by weak CH⋯O hydrogen bonds to the disordered perchlorates. The pyrrolidine moiety is turned by 90° with respect to 1 and forms intramolecular NH⋯O hydrogen bonds. The coordination polyhedra of 1 and 2 possess Cs symmetry, and the salophens are not planar in either of them.  相似文献   

16.
Nickel(II) and cobalt(II) complexes with optically active diaminodioxime (H2L, the derivative of 3-carene) of the compositions [Ni(H2L)NO3]NO3 (I), Ni(H2L)Cl2 (II), [Ni(HL)]ClO4 · H2O (III), and Co(H2L)Cl2 (IV), were synthesized. According to X-ray diffraction data, the structures of the paramagnetic compound I and diamagnetic complex III are ionic. In the cation of I, the distorted NiN4O2 octahedron is formed by the N atoms of the tetradentate cyclic ligand (H2L molecule) and by the O atoms of NO3 –; anion functioning as bidentate cyclic ligands. In the cation of III, the NiN4 coordination unit is a distorted square formed upon coordination of the tetradentate cyclic ligand, HL–; anion. The data of magnetochemistry and UV-Vis, IR, and Raman spectroscopy suggest that paramagnetic complexes II and IV contain a distorted octahedral polyhedron MCl2N4 (M = Ni, Co).  相似文献   

17.
As shown previously by X-ray structure determinations, [tris(1,3-dithiole-2-thione-4,5-dithiolato)stannate(IV)](2-) salts, [Q](2)[Sn(dmit)(3)], contain isolated cations and dianions. While the tin centres generally having octahedral geometries, the overall shapes of the dianions of these complexes in the solid state can differ with conformations varying from T, Y to asymmetrical arrangements. We now report, as a follow up to our earlier study on the Y-shaped complex, [NEt(4)](2)[Sn(dmit)(3)], an experimental and theoretical study of the vibrational spectra of solid solvated {[AsPh(4)](2)[Sn(dmit)(3)] x Me(2)CO}, in which the dianion has a T-shaped conformation. The infrared and Raman spectra, recorded from 4000 to 150 cm(-1), have been analysed by different ab initio calculations based on restricted Hartree-Fock (RHF) and density functional theory (DFT-Beck3LYP). The calculations were carried out on isolated dianions and cations with the 6-31G and 6-31G(d) basis sets and effective core potentials of Steven, Bash and Krauss (SBK). Fundamentals, overtones and combinations have been assigned. Generally, the Y- and T-shaped dianions exhibit similar infrared/Raman spectra, apart from differences in the C=C and the symmetrical M-S stretching frequencies: such differences can be used diagnostically to distinguish the overall shape of the tris(chelated)metallate dianion.  相似文献   

18.
19.
20.
Yeh CY  Chiang YL  Lee GH  Peng SM 《Inorganic chemistry》2002,41(16):4096-4098
The one-electron oxidized linear pentanuclear nickel complexes [Ni(5)(tpda)(4)(H(2)O)(BF(4))](BF(4))(2) (1) and [Ni(5)(tpda)(4)(SO(3)CF(3))(2)](SO(3)CF(3)) (2) have been synthesized by reacting the neutral compound [Ni(5)(tpda)(4)Cl(2)] with the corresponding silver salts. These compounds have been characterized by various spectroscopic techniques. Compound 1 crystallizes in the monoclinic space group P2(1)/n with a = 15.3022(1) A, b = 31.0705(3) A, c = 15.8109(2) A, beta = 92.2425(4) degrees, V = 7511.49(13) A(3), Z = 4, and compound 2 crystallizes in the monoclinic space group C2/c with a = 42.1894(7) A, b = 17.0770(3) A, c = 21.2117(4) A, beta = 102.5688(8) degrees, V = 14916.1(5) A(3), Z = 8. X-ray structural studies reveal an unsymmetrical Ni(5) unit for both compounds 1 and 2. Compounds 1 and 2 show stronger Ni-Ni interactions as compared to those of the neutral compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号