首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lanthanide hydroxide cluster complexes with acetylacetonate were synthesized by the hydrolysis of the corresponding hydrated lanthanide acetylacetonates in methanol in the presence of triethylamine. Polymeric lanthanide hydroxide complexes based on diamond-shaped dinuclear repeating units of [Ln(2)(CH(3)CO(3))(2)](4+) (Ln = La, Pr) and discrete complexes featuring a tetranuclear distorted cubane core of [Ln(4)(μ(3)-OH)(2)(μ(3)-OCH(3))(2)](8+) (Ln = Nd, Sm) and a nonanuclear core of [Ln(9)(μ(4)-O)(μ(4)-OH)(μ(3)-OH)(8)](16+) (Ln = Eu-Dy, Er, Yb) were obtained. The dependence of the cluster nuclearity on the identity of the lanthanide ion is rationalized in terms of the influences of a metal ion's Lewis acidity and the sterics about the Ln-OH unit on the kinetics of the assembly process that leads to a particular cluster.  相似文献   

2.
The synthesis of hexanuclear lanthanide hydroxo complexes by controlled hydrolysis led to polymorphic compounds. The hexanuclear entities crystallize in four different ways that depend on the extent of their hydration. The four structures can be described as hexanuclear lanthanide entities with formula [Ln(6)(mu(6)-O)(mu(3)-OH)(8)(NO(3))(6)(H(2)O)(12)](2+). Two additional NO(3)(-) ions intercalate between the hexanuclear entities in order to ensure the electroneutrality of the crystal structure. Some crystallization water molecules fill the intermolecular space. The three first families of compounds (1-3) exhibit crystal structures that have previously been reported. The fourth family of compounds (4) is described here for the first time. Its chemical formula is [Ln(6)(mu(6)-O)(mu(3)-OH)(8)(NO(3))(6)(H(2)O)(12)](NO(3))(2).2H(2)O (Ln = Gd, Er, and Y). In this paper, the chemical and thermal stabilities of the hexanuclear lanthanide compounds are reported together with the magnetic properties of the Gd(III)-containing species. To use these entities as precursors for new materials, the substitution of the nitrato groups by chloride ions has been studied. Two byproduct compounds have so been obtained: The first (compound 5) is a nitrato/chloride hexanuclear compound of chemical formula [Er(6)(mu(6)-O)(mu(3)-OH)(8)(NO(3))(6)(H(2)O)(12)](NO(3))Cl.2H(2)O. The second one (compound 6) is a polymeric compound in which the hexanuclear entities are linked by an unexpected and original N(2)O(4) bridge. Its chemical formula is [Er(6)(mu(6)-O)(mu(3)-OH)(8)(NO(3))(4)(H(2)O)(11)(OH)(ONONO(2))]Cl(3).2H(2)O. Its crystal structure can be described as the juxtaposition of chainlike molecular motifs. To the best of our knowledge, this is the first example of a coordination polymer synthesized from an isolated polylanthanide hydroxo complex.  相似文献   

3.
Two systems, Ln/Sn/Se/en and Ln/Sn/Se/dien, were investigated under solvothermal conditions, and novel lanthanide selenidostannates [{Ce(en)(4)}(2)(μ-Se(2))]Sn(2)Se(6) (1a), [{Ln(en)(3)}(2)(μ-OH)(2)]Sn(2)Se(6) (Ln = Pr(1b), Nd(1c), Gd(1d); en = ethylenediamine), [{Ln(dien)(2)}(4)(μ(4)-Sn(2)Se(9))(μ-Sn(2)Se(6))](∞) (Ln = Ce(2a), Nd(2b)), and [Hdien][Gd(dien)(2)(μ-SnSe(4))] (2c) (dien = diethylenetriamine) were prepared and characterized. Two structural types of lanthanide selenidostannates were obtained across the lanthanide series in both systems. In the Ln/Sn/Se/en system, two types of binuclear lanthanide complex cations [Ce(2)(en)(8)(μ-Se(2))](4+) and [{Ln(en)(3)}(2)(μ-OH)(2)](4+) (Ln = Pr, Nd, Gd) were formed depending on the Ln(3+) ions. The complex cations are compensated by the [Sn(2)Se(6)](4-) anions. In the Ln/Sn/Se/dien system, coordination polymer [{Ln(dien)(2)}(4)(μ(4)-Sn(2)Se(9))(μ-Sn(2)Se(6))](∞) and ionic complex [Hdien][Gd(dien)(2)(μ-SnSe(4))] are obtained along the lanthanide series, among which the μ(4)-Sn(2)Se(9), μ-Sn(2)Se(6) and μ-SnSe(4) ligands to the Ln(3+) ions were observed. The formation of title complexes shows the effects of lanthanide metal size and amino ligand denticity on the lanthanide selenidostannates. Complexes 1a-2c exhibit semiconducting properties with band gaps between 2.08 and 2.48 eV.  相似文献   

4.
Lisowski J 《Inorganic chemistry》2011,50(12):5567-5576
The controlled formation of lanthanide(III) dinuclear μ-hydroxo-bridged [Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes (where X = H(2)O, NO(3)(-), or Cl(-)) of the enantiopure chiral macrocycle L is reported. The (1)H and (13)C NMR resonances of these complexes have been assigned on the basis of COSY, NOESY, TOCSY, and HMQC spectra. The observed NOE connectivities confirm that the dimeric solid-state structure is retained in solution. The enantiomeric nature of the obtained chiral complexes and binding of hydroxide anions are reflected in their CD spectra. The formation of the dimeric complexes is accompanied by a complete enantiomeric self-recognition of the chiral macrocyclic units. The reaction of NaOH with a mixture of two different mononuclear lanthanide(III) complexes, [Ln(1)L](3+) and [Ln(2)L](3+), results in formation of the heterodinuclear [Ln(1)Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes as well as the corresponding homodinuclear complexes. The formation of the heterodinuclear complex is directly confirmed by the NOESY spectra of [EuLuL(2)(μ-OH)(2)(H(2)O)(2)](4+), which reveal close contacts between the macrocyclic unit containing the Eu(III) ion and the macrocyclic unit containing the Lu(III) ion. While the relative amounts of homo- and heterodinuclear complexes are statistical for the two lanthanide(III) ions of similar radii, a clear preference for the formation of heterodinuclear species is observed when the two mononuclear complexes contain lanthanide(III) ions of markedly different sizes, e.g., La(III) and Yb(III). The formation of heterodinuclear complexes is accompanied by the self-sorting of the chiral macrocyclic units based on their chirality. The reactions of NaOH with a pair of homochiral or racemic mononuclear complexes, [Ln(1)L(RRRR)](3+)/[Ln(2)L(RRRR)](3+), [Ln(1)L(SSSS)](3+)/[Ln(2)L(SSSS)](3+), or [Ln(1)L(rac)](3+)/[Ln(2)L(rac)](3+), results in mixtures of homochiral, homodinuclear and homochiral, heterodinuclear complexes. On the contrary, no heterochiral, heterodinuclear complexes [Ln(1)L(RRRR)Ln(2)L(SSSS)(μ-OH)(2)X(2)](n+) are formed in the reactions of two different mononuclear complexes of opposite chirality.  相似文献   

5.
Zheng XJ  Jin LP  Gao S 《Inorganic chemistry》2004,43(5):1600-1602
Two novel heptanuclear lanthanide clusters of the dicubane-like type [Ln(7)(micro(3)-OH)(8)](13+) (Ln = Ho (1), Yb (2)) were obtained via hydrothermal reaction, and as building blocks, they were formally assembled into porous three-dimensional networks through the linkage of 1,4-naphthalenedicarboxylate (1,4-NDA), forming first examples of porous lanthanide polymers with 1,4-NDA, [Ln(7)(micro(3)-OH)(8)(1,4-NDA)(6)(OH)(0.5)(Ac)(0.5)(H(2)O)(7)].4H(2)O (Ln = Ho, Yb). The coordinating water molecules and lattice water molecules are enclathrated in the cavities.  相似文献   

6.
Xu G  Wang ZM  He Z  Lü Z  Liao CS  Yan CH 《Inorganic chemistry》2002,41(25):6802-6807
A series of nonanuclear lanthanide oxo-hydroxo complexes of the general formula [Ln(9)(mu(4)-O)(2)(mu(3)-OH)(8)(mu-BA)(8)(BA)(8)](-)[HN(CH(2)CH(3))(3)](+).(CH(3)OH)(2)(CHCl(3)) (BA = benzoylacetone; Ln = Sm, 1; Eu, 2; Gd, 3; Dy, 4; Er, 5) were prepared by the reaction of hydrous lanthanide trichlorides with benzoylacetone in the presence of triethylamine in methanol and recrystallized from chloroform/methanol (1:10) at room temperature. These five compounds are isomorphous. Crystal data for 1: cubic, Pn3n; T = 180 K; a = 33.8652(4) A; V = 38838.4(8) A(3); Z = 6; D(calcd) = 1.125 g cm(-)(3); R1 = 3.37%. Crystal data for 2: cubic, Pn3n; T = 180 K; a = 33.8252(8) A; V = 38700.9(16) A(3); Z = 6; D(calcd) = 1.133 g cm(-)(3); R1 = 4.97%. Crystal data for 3: cubic, Pn3n; T = 180 K; a = 33.7061(6) A; V = 38293.5(12) A(3); Z = 6; D(calcd) = 1.157 g cm(-)(3); R1 = 5.13%. Crystal data for 4: cubic, Pn3n; T = 180 K; a = 33.5900(7) A; V = 37899.2(14) A(3); Z = 6; D(calcd) = 1.182 g cm(-)(3); R1 = 4.03%. Crystal data for 5: cubic, Pn3n; T = 180 K; a = 33.5054(8) A; V = 37613.6(16) A(3); Z = 6; D(calcd) = 1.202 g cm(-)(3); R1 = 4.86%. The core of the anionic cluster comprises two vertex-sharing square-pyramidal [Ln(5)(mu(4)-O)(mu(3)-OH)(4)](9+) units. The compounds were characterized by elemental analysis, IR, fast atom bombardment mass spectra, thermogravimetry, and differential scanning calorimetry. The thermal analysis indicated that the nonanuclear species were stable up to 150 degrees C. Luminescence spectra of 2 and magnetic properties of 1-5 were also studied.  相似文献   

7.
Syntheses, lanthanide quantitative analyses, mass spectrometry and luminescence spectroscopy, and decay dynamics of crystals containing pentanuclear hetero-lanthanide(III) nanoclusters [(Ln'(5-x)Ln(x))(NO(3))(6)(mu(5)-OH)(mu(4)-L)(2)] (0 < or = x < or = 5), Ln' = Eu or Tb; Ln = La-Nd, Sm-Ho (hereafter Ln'(5-x) Ln(x)) were undertaken in search of information on factors governing self-assembly processes by which the clusters are formed and electronic interactions within and between them. The data obtained are consistent with the self-assembly of Ln'(5-x) Ln(x) nanoclusters being a concerted process featuring a profound expression of complementarity among mutually bridging [Ln(mu(4)-L](-) and [Ln(NO(3))(2)](+) components. The energy transport regime in crystals of Eu(5-x) Ln(x) is in the dynamic regime when x = 0 or Ln = La and, at 293 K, Ln = Dy, despite the presence of two crystallographically different Eu(3+) coordination environments which give rise to a doublet in the excitation and emission spectra of Eu(3+)((5)D(0)). The luminescence decay behavior of Eu(3+)((5)D(0)) in Eu(5-x) Ln(x) (Ln = Dy (for 77 K), Sm) is intermediate between the static and dynamic limits and reveals extensive electronic coupling among lanthanide ions, including many-body processes at relatively high Dy(3+) or Sm(3+) concentrations.  相似文献   

8.
The reaction of the lanthanide trichloride hexahydrates [LnCl(3).6H(2)O] (Ln = Yb, Lu) with two equivalents of benzoylferrocenoylmethane resulted in the tetranuclear lanthanide hydroxo clusters [Ln(4)(mu(3)-OH)(4)(FcacacPh)(8)] (Ln = Yb (1), Lu (2); FcacacPh = benzoylferrocenoylmethanide). Compounds 1 and 2 are made up of a distorted tetranuclear lanthanide Ln(4)O(4) cubane core consisting of four mu(3)-oxygen atoms while the eight FcacacPh ligands build up the peripheral part of the cluster. These compounds contain the maximum number of ferrocene units anchored to any molecular metal-heteroatom framework reported so far and for which the X-ray structures are known.  相似文献   

9.
Zhou J  Liu X  An L  Hu F  Yan W  Zhang Y 《Inorganic chemistry》2012,51(4):2283-2290
A series of new lanthanide thiostannates(IV), [Y(2)(dien)(4)(μ-OH)(2)]Sn(2)S(6) (1, dien = diethyl-enetriamine), (tetaH)(2)[Ln(2)(teta)(2)(tren)(2)(μ-Sn(2)S(6))]Sn(2)S(6) [Ln = Eu (2), Sm (3); teta = triethylenetetramine; tren = tris(2-aminoethyl)amine] and [Eu(2)(tepa)(2)(μ-OH)(2)(μ-Sn(2)S(6))](tepa)(0.5)·H(2)O (4, tepa = tetraethylene-pentamine) were solvothermally synthesized and structurally characterized. 1 consists of a binuclear [Y(2)(dien)(4)(μ(2)-OH)(2)](4+) cation and a discrete dimeric [Sn(2)S(6)](4-) anion. Both 2 and 3 are isostructural and composed of [Ln(2)(teta)(2)(tren)(2)(μ-Sn(2)S(6))](2+) cations, protonated triethylenetetramines (tetaH), and discrete dimeric [Sn(2)S(6)](4-) anions. A Sn(2)S(6)(4-) anion bridges two [Ln(teta)(tren)](3+) cations via the trans-S(t) (t = terminal) atoms to form the first examples of inorganic-organic hybrid thiostannate cations [Ln(2)(teta)(2)(tren)(2)(μ-Sn(2)S(6))](2+). 4 consists of one-dimensional (1-D) neutral chains [Eu(2)(tepa)(2)(μ-OH)(2)(μ-Sn(2)S(6))](n) built up from the linkage of dinuclear complex cations [Eu(2)(tepa)(2)(μ(2)-OH)(2)](4+) and bridging anions [Sn(2)S(6)](4-), free tepa molecules, and lattice water molecules. The present compounds exhibit wide-band gap semiconducting properties with absorption band edges between 2.40 and 2.91 eV.  相似文献   

10.
A series of cationic lanthanide porphyrinate complexes of the general formula [(Por)Ln(H(2)O)(3)](+) (Ln(3+)=Yb(3+) and Er(3+)) were synthesized in moderate yields through the interaction of meso-pyridyl-substituted porphyrin free bases (H(2)Por) with [Ln{N(SiMe(3))(2)}(3)]·x[LiCl(thf)(3)], and the corresponding neutral derivatives [(Por)Ln(L(OMe))] (L(OMe)(-)=[(η(5)-C(5)H(5))Co{P(=O)(OMe)(2)}(3)](-)) were also prepared from [(Por)Ln(H(2)O)(3)](+) by the addition of the tripodal anion, L(OMe)(-), an effective encapsulating agent for lanthanide ions. Furthermore, the water-soluble lanthanide(III) porphyrinate complexes--including [(cis-DMPyDPP)Yb(H(2)O)(3)]Cl(3) (cis-DMPyDPP=5,10-bis(N-methylpyridinium-4'-y1)-15,20-di(phenyl)porphyrin), [(trans-DMPyDPP)Yb(H(2)O)(3)]Cl(3) (trans-DMPyDPP=5,15-bis(N-methylpyridinium-4'-y1)-10,20-di(phenyl)porphyrin), [(TMPyP)Yb(L(OMe))]I(4), and [(TMPyP)Er(L(OMe))]I(4) (TMPyP=tetrakis(N-methylpyridinium-4-y1)porphyrin)--were obtained by methylation of the corresponding complexes with methyl iodide and unambiguously characterized. The binding interactions and photocleavage activities of the water-soluble lanthanide(III) porphyrinate complexes towards DNA were investigated by UV-visible, fluorescence, and near-infrared luminescence spectroscopy, as well as circular dichroism and gel electrophoresis.  相似文献   

11.
12.
Encapsulation complexes formulated as {[La(DMF)(9)](2)[Cu(12)(CN)(18)].2DMF}(infinity), 1, and {[Ln(DMF)(8)][Cu(6)(CN)(9)].2DMF}(infinity) (Ln = Eu, 2; Gd, 3; Er, 4) were obtained from the one step reaction of LnCl(3) (Ln = La, Eu, Gd, Er) with CuCN and KCN in DMF. They consist of a three-dimensional Cu-CN anionic array with pockets occupied by the cation, [Ln(DMF)(x)](3+) (x = 8, 9). These complexes are believed to be the first examples of encapsulated Ln(3+) cations, and the zeolite-like anionic network is unique. A two step procedure that employs the same components generates the layer structure {Ln(DMF)(4)Cu(2)(CN)(5)}(infinity) (Ln = La, 5; Gd, 6; Er, 7) in which the five-membered ring repeating unit has Cu-CN-Ln and Cu-CN-Cu linkages which are also without precedent. Encapsulation complexes can also be prepared from CuCl, reacting with LnCl(3) and KCN. The crystal structure of {K(DMF)(2)Cu(CN)(2)}(infinity) (8) provides insight into the proposed reaction pathways for forming these two different structural types.  相似文献   

13.
The treatment of ortho ring-functionalised 1-phenylbutane-1,3-dione ligands bearing nitro (Hnpd, Hnmc), methoxy (Hmmc) or fluoro (Hfpp) groups with hydrated lanthanoid salts has provided [Er(4)(μ(3)-OH)(4)(H(2)O)(2)(npd)(8)] (3), [Ln(4)(μ(3)-OH)(4)(nmc)(8)] (Ln = Gd (4), Tb (5), Dy (6) and Er (7)), [Er(4)(μ(3)-OH)(4)(mmc)(8)] (8) and [Er(4)(μ(3)-OH)(4)(H(2)O)(2)(fpp)(8)] (9), respectively. The products were all obtained as cubane clusters in the solid state, as distinct from previous diketonato clusters, with control over motif formation attributed to the steric influence of the ortho-positioned functional groups at the cluster periphery. This work highlights a means of targeting a specific lanthanoid cluster motif by the rational modification of ligands at key locations.  相似文献   

14.
Co-crystallization of K2[Ru(bipy)(CN)4] with lanthanide(III) salts (Ln = Pr, Nd, Gd, Er, Yb) from aqueous solution affords coordination oligomers and networks in which the [Ru(bipy)(CN)4]2- unit is connected to the lanthanide cation via Ru-CN-Ln bridges. The complexes fall into two structural types: [{Ru(bipy)(CN)4}2{Ln(H2O)m}{K(H2O)n}] x xH2O (Ln = Pr, Er, Yb; m = 7, 6, 6, respectively), in which two [Ru(bipy)(CN)4]2- units are connected to a single lanthanide ion by single cyanide bridges to give discrete trinuclear fragments, and [{Ru(bipy)(CN)4}3{Ln(H2O)4}2] x xH2O (Ln = Nd, Gd), which contain two-dimensional sheets of interconnected, cyanide-bridged Ru2Ln2 squares. In the Ru-Gd system, the [Ru(bipy)(CN)4]2- unit shows the characteristic intense (3)metal-to-ligand charge transfer luminescence at 580 nm with tau = 550 ns; with the other lanthanides, the intensity and lifetime of this luminescence are diminished because of a Ru --> Ln photoinduced energy transfer to low-lying emissive states of the lanthanide ions, resulting in sensitized near-infrared luminescence in every case. From the degree of quenching of the Ru-based emission, Ru --> Ln energy-transfer rates can be estimated, which are in the order Yb (k(EnT) approximately 3 x 10(6) sec(-1), the slowest energy transfer) < Er < Pr < Nd (k(EnT) approximately 2 x 10(8) sec(-1), the fastest energy transfer). This order may be rationalized on the basis of the availability of excited f-f levels on the lanthanide ions at energies that overlap with the Ru-based emission spectrum. In every case, the lifetime of the lanthanide-based luminescence is short (tens/hundreds of nanoseconds, instead of the more usual microseconds), even when the water ligands on the lanthanide ions are replaced by D2O to eliminate the quenching effects of OH oscillators; we tentatively ascribe this quenching effect to the cyanide ligands.  相似文献   

15.
The platelike crystals of a series of novel molecular conductors, which are based on the pi-donor molecules BDT-TTP (2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene) with a tetrathiapentalene skeleton and lanthanide nitrate complex anions [Ln(NO3)x](3-x)(Ln = La, Ce, (Pr), Tb, Dy, Ho, Er, Tm, Yb, Lu) with localized 4f magnetic moments, were synthesized. Except for the Ce complex, the salts were composed of (BDT-TTP)(5)[Ln(NO(3))(5)] and were isostructural. Even though the Ce crystal had a different composition, (BDT-TTP)(6)[Ce(NO(3))(6)](C(2)H(5)OH)(x)() (x approximately 3), the crystals all had the space group P(-)1. Although the X-ray examination of the Pr salts was insufficient, the existence of two modifications was suggested in these systems by preliminary X-ray examination. Previously, we reported the crystal structures and unique magnetic properties of (BDT-TTP)(5)[Ln(NO(3))(5)] (Ln = Sm, Eu, Nd, Gd). Thus, by combining the results of this work with previous one, we for the first time succeeded in obtaining a complete set of organic conductors composed of the identical pi-donors (BDT-TTP in this case) and all the lanthanide nitrate complex anions (except the complex with Pm(3+)). The crystals were all metallic down to 2 K. Electronic band structure calculations resulted in two-dimensional Fermi surfaces, which was consistent with their stable metallic states. Except for the Lu complex, which lacked paramagnetic moments, the magnetic susceptibilities were measured on the six heavy lanthanide ion complex salts by a SQUID magnetometer (Ln = Tb, Dy, Ho, Er, Tm, Yb). The large paramagnetic susceptibilities, which were caused by the paramagnetic moments of the rare-earth ions, were obtained. The Curie-Weiss law fairly accurately reproduced the temperature dependence of the magnetic susceptibilities of (BDT-TTP)(5)[Ho(NO(3))(5)] in the experimental temperature range (2-300 K) and a comparatively large Weiss temperature (|THETAV;|) was obtained (THETAV;(Ho) = -15 K). A Weiss temperature (THETAV;(Tm) = -8 K) was also obtained for Tm. The |THETAV;| values of other (BDT-TTP)(5)[Ln(NO(3))(5)] salts and (BDT-TTP)(6)[Ce(NO(3))(6)](C(2)H(5)OH)x(x approximately 3) were as follows: |THETAV;|/K = 4 (Er), < or =2 (Ce, Tb, Dy, Yb). The comparatively strong intermolecular magnetic interaction between Ho(3+) ions, which was suggested by the |THETAV;| value, is inconsistent with the traditional image of strongly localized 4f orbitals shielded by the electrons in the outer 5s and 5p orbitals. The dipole interactions between Ln(3+) ions causing the Curie-Weiss behavior and the comparatively large THETAV; value of (BDT-TTP)(5)[Ho(NO(3))(5)] is inconsistent with the data, since the complexes exhibit isostructural properties and there is not a clear relationship between the magnitudes of THETAV; values and those of magnetic moments. Therefore, it is possible that the 4f orbitals of Ho atom are sensitive to the ligand field, which will have an effect on the orbital moment of the Ho(3+) ion and/or produce a small amount of mixing between 4f and ligand orbitals to give rise to "real" intermolecular antiferromagnetic interaction through intermolecular overlapping between pi (BDT-TTP) and ligand orbitals of lanthanide nitrate complex anions.  相似文献   

16.
The reactivity of the [alpha-SiW(11)O(39)](8-) monovacant polyoxometalate with lanthanide has been investigated for four different trivalent rare-earth cations (Ln = Nd(III), Eu(III), Gd(III), Yb(III)). The crystal structures of KCs(4)[Yb(alpha-SiW(11)O(39))(H(2)O)(2)] x 24H(2)O (1), K(0.5)Nd(0.5)[Nd(2)(alpha-SiW(11)O(39))(H(2)O)(11)] x 17H(2)O (2a), and Na(0.5)Cs(4.5)[Eu(alpha-SiW(11)O(39))(H(2)O)(2)] x 23H(2)O (3a) are reported. The solid-state structure of compound 1 consists of linear wires built up of [alpha-SiW(11)O(39)](8-) anions connected by Yb(3+) cations, while the linkage of the building blocks by Eu(3+) centers in 3a leads to the formation of zigzag chains. In 2a, dimeric [Nd(2)(alpha-SiW(11)O(39))(2)(H(2)O)(8)](10-) entities are linked by four Nd(3+) cations. The resulting chains are connected by lanthanide ions, leading to a bidimensional arrangement. Thus, the dimensionality, the organization of the polyoxometalate building units, and the Ln/[alpha-SiW(11)O(39)](8-) ratio in the solid state can be tuned by choosing the appropriate lanthanide. The luminescent properties of compound 3a have been studied, showing that, in solution, the polymer decomposes to give the monomeric complex [Eu(alpha-SiW(11)O(39))(H(2)O)(4)](5-). The lability of the four exogenous ligands connected to the rare earth must allow the functionalization of this lanthanide polyanion.  相似文献   

17.
Zhang SY  Mao JG 《Inorganic chemistry》2011,50(11):4934-4943
Hydrothermal reactions of lanthanide(III) oxide, molybdenum oxide, and SeO(2) at 230 °C lead to five new molybdenum-rich quaternary lanthanide selenites with two types of structures, namely, H(3)Ln(4)Mo(9.5)O(32)(SeO(3))(4)(H(2)O)(2) (Ln = La, 1; Nd, 2) and Ln(2)Mo(3)O(10)(SeO(3))(2)(H(2)O) (Ln = Eu, 3; Dy, 4; Er, 5). Compounds 1 and 2 feature a complicated three-dimensional (3D) architecture constructed by the intergrowth of infinite molybdenum selenite chains of [Mo(4.75)SeO(19)](5.5-) and one-dimensional (1D) lanthanide selenite chains. The structures of 3, 4, and 5 exhibit 3D network composed of 1D [Mo(3)SeO(13)](4-) anionic chains connected by lanthanide selenite chains. The molybdenum selenite chain of [Mo(4.75)SeO(19)](5.5-) in 1 and 2 is composed of a pair of [Mo(3)SeO(13)](4-) chains as in 3, 4, and 5 interconnected by a [Mo(1.75)O(8)](5.5-) double-strand polymer via corner-sharing. The lanthanide selenite chains in both structures are similar in terms of coordination modes of selenite groups as well as the coordination environments of lanthanide(III) ions. Luminescent studies at both room temperature and 10 K indicate that compound 2 displays strong luminescence in the near-IR region and compound 3 exhibits red fluorescent emission bands with a luminescent lifetime of 0.57 ms. Magnetic properties of these compounds have been also investigated.  相似文献   

18.
The reaction of a double-betaine-containing ligand with LnPMo(12)O(40)·nH(2)O (Ln = Dy, Tb and Er) led to the isolation of new polyoxometalate-templated lanthanide-organic hybrid layers with the molecular formula [Ln(L)(1.5)(H(2)O)(5)][PMo(12)O(40)]·1.5CH(3)CN·2H(2)O (Ln = Dy (1), Tb (2) and Er (3); L = 1,4-bis(pyridinil-4-carboxylato)-l,4-dimethylbenzene). All compounds were characterized by elemental analyses, TG analyses, IR and the single-crystal X-ray diffraction. Compounds 1-3 are isostructural and possess a 2D undulating cationic network [Ln(L)(1.5)(H(2)O)(5)](n)(3n+) with the honeycomb-like cavities. Interestingly, the interval 2D networks are further connected by the H-bonds to form a 3D supramolecular framework. Moreover, two of such identical supramolecular frameworks are 2-fold interpenetrated with each other and encapsulate the α-Keggin-type [PMo(12)O(40)](3-) anionic templates and the solvent molecules. These composite compounds display both luminescent properties (induced by organic ligands and/or lanthanide ions) and electrocatalytic activities towards the reduction of nitrite.  相似文献   

19.
This work illustrates a simple approach for optimizing long-lived near-infrared lanthanide-centered luminescence using trivalent chromium chromophores as sensitizers. Reactions of the segmental ligand L2 with stoichiometric amounts of M(CF(3)SO(3))(2) (M = Cr, Zn) and Ln(CF(3)SO(3))(3) (Ln = Nd, Er, Yb) under aerobic conditions quantitatively yield the D(3)-symmetrical trinuclear [MLnM(L2)(3)](CF(3)SO(3))(n) complexes (M = Zn, n = 7; M = Cr, n = 9), in which the central lanthanide activator is sandwiched between the two transition metal cations. Visible or NIR irradiation of the peripheral Cr(III) chromophores in [CrLnCr(L2)(3)](9+) induces rate-limiting intramolecular intermetallic Cr→Ln energy transfer processes (Ln = Nd, Er, Yb), which eventually produces lanthanide-centered near-infrared (NIR) or IR emission with apparent lifetimes within the millisecond range. As compared to the parent dinuclear complexes [CrLn(L1)(3)](6+), the connection of a second strong-field [CrN(6)] sensitizer in [CrLnCr(L2)(3)](9+) significantly enhances the emission intensity without perturbing the kinetic regime. This work opens novel exciting photophysical perspectives via the buildup of non-negligible population densities for the long-lived doubly excited state [Cr*LnCr*(L2)(3)](9+) under reasonable pumping powers.  相似文献   

20.
The heterobitopic ligands L(AB4) and L(AB5) have been designed and synthesised with the ultimate aim of self-assembling dual-function lanthanide complexes containing either a magnetic and a luminescent probe or two luminescent probes emitting at different wavelengths. They react with lanthanide ions to form complexes of composition [Ln(2)(L(ABX))(3)](6+) of which three (X = 4; Ln = Pr, Nd, Sm) have been isolated and characterised by means of X-ray diffraction. The unit cells contain triple-stranded helicates in which the three ligand strands are wrapped tightly around the two lanthanide ions. In acetonitrile solution the ligands form not only homobimetallic, but also heterobimetallic complexes of composition [Ln(1)Ln(2)(L(ABX))(3)](6+) when reacted with a pair of different lanthanide ions. The yield of heterobimetallic complexes is analyzed in terms of both the difference in ionic radii of the lanthanide ions and of the inherent tendency of the ligands to form high percentages of head-head-head (HHH) helicates in which all three ligand strands are oriented in the same direction with respect to the Ln-Ln vector. The latter is very sensitive to slight modifications of the tridentate coordinating units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号