共查询到20条相似文献,搜索用时 62 毫秒
1.
Lad MD Birembaut F Frazier RA Green RJ 《Physical chemistry chemical physics : PCCP》2005,7(19):3478-3485
Surface pressure measurements and external reflection FTIR spectroscopy have been used to probe protein-lipid interactions at the air/water interface. Spread monomolecular layers of stearic acid and phosphocholine were prepared and held at different compressed phase states prior to the introduction of protein to the buffered subphase. Contrasting interfacial behaviour of the proteins, albumin and lysozyme, was observed and revealed the role of both electrostatic and hydrophobic interactions in protein adsorption. The rate of adsorption of lysozyme to the air/water interface increased dramatically in the presence of stearic acid, due to strong electrostatic interactions between the negatively charged stearic acid head group and lysozyme, whose net charge at pH 7 is positive. Introduction of albumin to the subphase resulted in solubilisation of the stearic acid via the formation of an albumin-stearic acid complex and subsequent adsorption of albumin. This observation held for both human and bovine serum albumin. Protein adsorption to a PC layer held at low surface pressure revealed adsorption rates similar to adsorption to the bare air/water interface and suggested very little interaction between the protein and the lipid. For PC layers in their compressed phase state some adsorption of protein occurred after long adsorption times. Structural changes of both lysozyme and albumin were observed during adsorption, but these were dramatically reduced in the presence of a lipid layer compared to that of adsorption to the pure air/water interface. 相似文献
2.
Spiecker PM Kilpatrick PK 《Langmuir : the ACS journal of surfaces and colloids》2004,20(10):4022-4032
A biconical bob interfacial shear rheometer was used to study the mechanical properties of asphaltenic films adsorbed at the oil-water interface. Solutions of asphaltenes isolated from four crude oils were dissolved in a model oil of heptane and toluene and allowed to adsorb and age in contact with water. Film elasticity (G') values were measured over a period of several days, and yield stresses and film masses were determined at the end of testing. The degree of film consolidation was determined from ratios of G'/film mass and yield stress/G'. Asphaltenes with higher concentrations of heavy metals (Ni, 330-360 ppm; V, 950-1000 ppm), lower aromaticity (H/C, 1.24-1.29), and higher polarity (N, 1.87-1.99) formed films of high elasticity, yield stress, and consolidation. Rapid adsorption kinetics and G' increases were seen when asphaltenes were near their solubility limit in heptane-toluene mixtures (approximately 50% (v/v) toluene). In solvents of greater aromaticity, adsorption kinetics and film masses were reduced at comparable aging times. Poor film forming asphaltenes had yield stress/G' values ((1.01-1.21) x 10(-2)) more than 4-fold lower than those of good film forming asphaltenes. n-heptane asphaltenes fractionated by filtering solutions prepared at low aromaticity (approximately 40% toluene in mixtures of heptane and toluene) possessed higher concentrations of heavy metals and nitrogen and higher aromaticity. The less soluble fractions of good film forming asphaltenes exhibited enhanced adsorption kinetics and higher G' and yield stress values in pure toluene. Replacing the asphaltene solutions with neat heptane-toluene highlighted the ability of films to consolidate and become more elastic over several hours. Adding resins in solution to a partially consolidated film caused a rapid reduction in elasticity followed by gradual but modest consolidation. This study is among the first to directly relate asphaltene chemistry to adsorption kinetics, adsorbed film mechanical properties, and consolidation kinetics. 相似文献
3.
We calculate the optical trapping forces exerted by a single laser beam strongly focused on a dielectric sphere located at a two-dimensional (2D) oil-water interface. The calculated lateral trapping forces, based on the geometrical optics approximation (GOA), agree with experimental measurements of the trapping force. Importantly, the calculations verify that the radiation force exerted on particles perpendicular to the interface is not sufficient to induce capillary interactions between particle pairs, which could be mistaken for particle-particle interactions. Finally, we find that the trapping forces depend on the three-phase contact angle of the particle at the interface. 相似文献
4.
Du K Liddle JA Berglund AJ 《Langmuir : the ACS journal of surfaces and colloids》2012,28(25):9181-9188
Single-particle tracking with real-time feedback control can be used to study three-dimensional nanoparticle transport dynamics. We apply the method to study the behavior of adsorbed nanoparticles at a silicone oil-water interface in a microemulsion system over a range of particles sizes from 24 nm to 2000 nm. The diffusion coefficient of large particles (>200 nm) scales inversely with particle size, while smaller particles exhibit an unexpected increase in drag force at the interface. The technique can be applied in the future to study three-dimensional dynamics in a range of systems, including complex fluids, gels, biological cells, and geological media. 相似文献
5.
Cheung DL 《Langmuir : the ACS journal of surfaces and colloids》2012,28(23):8730-8736
Hydrophobins are small, amphiphilic proteins expressed by strains of filamentous fungi. They fulfill a number of biological functions, often related to adsorption at hydrophobic interfaces, and have been investigated for a number of applications in materials science and biotechnology. In order to understand the biological function and applications of these proteins, a microscopic picture of the adsorption of these proteins at interfaces is needed. Using molecular dynamics simulations with a chemically detailed coarse-grained potential, the behavior of typical hydrophobins at the water-octane interface is studied. Calculation of the interfacial adsorption strengths indicates that the adsorption is essentially irreversible, with adsorption strengths of the order of 100 k(B)T (comparable to values determined for synthetic nanoparticles but significantly larger than small molecule surfactants and biomolecules). The protein structure at the interface is unchanged at the interface, which is consistent with the biological function of these proteins. Comparison of native proteins with pseudoproteins that consist of uniform particles shows that the surface structure of these proteins has a large effect on the interfacial adsorption strengths, as does the flexibility of the protein. 相似文献
6.
Kunieda M Nakaoka K Liang Y Miranda CR Ueda A Takahashi S Okabe H Matsuoka T 《Journal of the American Chemical Society》2010,132(51):18281-18286
It is well-known that the amphiphilic solutes are surface-active and can accumulate at the oil-water interface. Here, we have investigated the water and a light-oil model interface by using molecular dynamic simulations. It was found that aromatics concentrated in the interfacial region, whereas the other hydrocarbons were uniformly distributed throughout the oil phase. Similar to previous studies, such concentrations were not observed at pure aromatics-water interfaces. We show that the self-accumulation of aromatics at the oil-water interface is driven by differences in the interfacial tension, which is lower for aromatics-water than between the others. The weak hydrogen bonding between the aromatic rings and the water protons provides the mechanism for lowering the interfacial tension. 相似文献
7.
Peggy M. Dunlap Wilson Carl F. Brandner 《Journal of colloid and interface science》1977,60(3):473-479
Ultra-low values of the tension at an oil-aqueous electrolyte solution interface can be developed by the addition of water-soluble surfactants of the petroleum sulfonate type. Interfacial tensions in the range of 10−3 dyne/cm or lower are readily achieved with surfactant concentrations of the order of 0.1 wt%. For a given oil and aqueous solution, the minimum interfacial tension resulting from the addition of a petroleum sulfonate depends markedly on the average equivalent weight of the sulfonate. Sulfonates having average equivalent weights higher and lower than a previously determined optimum weight, when mixed so as to yield this particular average weight, will also produce ultra-low interfacial tensions. For a given oil, additional control of this unusual type of interfacial activity is accomplished by adjustment of the electrolyte concentration of the aqueous phase. 相似文献
8.
9.
Hanczyc MM Toyota T Ikegami T Packard N Sugawara T 《Journal of the American Chemical Society》2007,129(30):9386-9391
Fatty acids have been investigated as boundary structures to construct artificial cells due to their dynamic properties and phase transitions. Here we have explored the possibility that fatty acid systems also demonstrate movement. An oil phase was loaded with a fatty acid anhydride precursor and introduced to an aqueous fatty acid micelle solution. The oil droplets showed autonomous, sustained movement through the aqueous media. Internal convection created a positive feedback loop, and the movement of the oil droplet was sustained as convection drove fresh precursor to the surface to become hydrolyzed. As the system progressed, more surfactant was produced and some of the oil droplets transformed into supramolecular aggregates resembling multilamellar vesicles. The oil droplets also moved directionally within chemical gradients and exhibited a type of chemotaxis. 相似文献
10.
11.
12.
Rane JP Harbottle D Pauchard V Couzis A Banerjee S 《Langmuir : the ACS journal of surfaces and colloids》2012,28(26):9986-9995
Asphaltenes constitute high molecular weight constituents of crude oils that are insoluble in n-heptane and soluble in toluene. They contribute to the stabilization of the water-in-oil emulsions formed during crude oil recovery and hinder drop-drop coalescence. As a result, asphaltenes unfavorably impact water-oil separation processes and consequently oil production rates. In view of this there is a need to better understand the physicochemical effects of asphaltenes at water-oil interfaces. This study elucidates aspects of these effects based on new data on the interfacial tension in such systems from pendant drop experiments, supported by results from nuclear magnetic resonance (NMR) and dynamic light scattering (DLS) studies. The pendant drop experiments using different asphaltene concentrations (mass fractions) and solvent viscosities indicate that the interfacial tension reduction kinetics at short times are controlled by bulk diffusion of the fraction of asphaltenes present as monomer. At low mass fractions much of the asphaltenes appear to be present as monomers, but at mass fractions greater than about 80 ppm they appear to aggregate into larger structures, a finding consistent with the NMR and DLS results. At longer times interfacial tension reduction kinetics are slower and no longer diffusion controlled. To investigate the controlling mechanisms at this later stage the pendant drop experiment was made to function in a fashion similar to a Langmuir trough with interfacial tension being measured during expansion of a droplet aged in various conditions. The interfacial tension was observed to depend on surface coverage and not on time. All observations indicate the later stage transition is to an adsorption barrier-controlled regime rather than to a conformational relaxation regime. 相似文献
13.
Cross linking and rheological characterization of adsorbed protein layers at the oil-water interface
The dilatational rheological properties of cross-linked protein layers adsorbed at the oil-water interface were investigated with help of a modified drop tensiometer allowing successive replacements of the external phase. This setup enables one to perform cross-linking reactions at the interface only, that is, without any contact between the cross-linking agent and protein molecules in solution, under continuous monitoring of the interfacial tension. The mechanical properties of the resulting interface were investigated with dilatational large strain experiments. Measured rheological properties were related to the expected stability of an emulsion against disproportionation by considering the ratio of the interfacial elasticity to the interfacial tension. In an attempt to increase this ratio to improve the resistance against disproportionation, experiments were performed with densified protein layers obtained via reduction of the droplet area prior to cross linking. To highlight the influence of the protein morphology on the dilatational rheological properties of the cross-linked adsorbed layers, experiments were performed with random coil (beta-casein) as well as globular (beta-lactoglobulin) proteins. Glutaraldehyde was used as a cross-linking agent. Experiments were performed at 55 degrees C and pH 7.0 in 20 mM imidazole buffer for later comparison with enzymatically cross-linked adsorbed protein layers. The present work demonstrated substantial qualitative and quantitative differences in the interfacial rheological properties of cross-linked random coil and globular proteins. 相似文献
14.
Tomato seed proteins adsorbed at the corn oil-water interface formed, after long ageing times, interfacial films with viscoelastic properties. The viscoelastic parameters of the films, derived by analysis of creep compliance-time curves, were markedly influenced by the aqueous phase protein concentration and showed maxima at a certain concentration which probably corresponded to monolayer saturation coverage. Tomato seed protein film viscoelasticity is greater than that of soybean protein, the parameters of which also show maxima at certain protein concentration. The lowering of pH brings about a decrease in tomato seed protein film viscoelasticity, a fact that could be the result of less molecular unfolding and consequently, less extensive intermolecular hydrophobic interaction. 相似文献
15.
Control over colloidal aggregation in monolayers of latex particles at the oil-water interface 总被引:1,自引:0,他引:1
Reynaert S Moldenaers P Vermant J 《Langmuir : the ACS journal of surfaces and colloids》2006,22(11):4936-4945
The controlled generation of 2D aggregate networks is studied experimentally using micrometer-sized polystyrene latex particles attached to the oil-water interface. Starting from an initially crystalline monolayer, appropriate combinations of carefully added electrolyte and surfactant enable control over both the fractal dimension and the kinetics of aggregation. Remarkably, the colloidal crystals formed upon first spreading remain stable, even for days, when substantial amounts of electrolyte are added to the aqueous phase. Pressure-area isotherms reveal a slow time evolution of the electrostatic dipole-dipole interaction. When the electrostatic interaction has been sufficiently weakened, aggregation proceeds in well-defined, reproducible manner. The aggregation process is analyzed using quantitative video microscopy. The evolution of the cluster size distribution and its moments is characterized, and static and dynamic scaling exponents are derived to identify the nature of the aggregation process. In the range of concentrations studied here, the kinetics all agree with a "fast", diffusion-limited cluster type of aggregation. However, the fractal dimension strongly depends on the composition of the aqueous subphase. Rather dense structures are found when only electrolyte is used, whereas more open structures are obtained when even small amounts of surfactant are added. It is suggested that this structural dependency is related to the effect of surfactant on the contact angle and its consequences for the anisotropic nature of the capillary interactions. 相似文献
16.
17.
The interfacial and bulk properties of submicron oil-in-water emulsions simultaneously stabilised with a conventional surfactant (either lecithin or oleylamine) and hydrophilic silica nanoparticles (Aerosil?380) were investigated and compared with emulsions stabilised by either stabiliser. Emulsions solely stabilised with lecithin or oleylamine showed poor physical stability, i.e., sedimentation and the release of pure oil was observed within 3 months storage. The formation and long-term stability of silica nanoparticle-coated emulsions was investigated as a function of the surfactant type, charge, and concentration; the oil phase polarity (Miglyol?812 versus liquid paraffin); and loading phase of nanoparticles, either oil or water. Highly stable emulsions with long-term resistance to coalescence and creaming were formulated even at low lecithin concentrations in the presence of optimum levels of silica nanoparticles. The attachment energy of silica nanoparticles at the non-polar oil-water interface in the presence of lecithin was significantly higher compared to oleylamine in line with good long-term stability of the former compared to the sedimentation and release of oil in the latter. The attachment energy of silica nanoparticles at the polar oil-water interface especially in the presence of oleylamine was up to five-times higher compared to the non-polar liquid paraffin. The interfacial layer structure of nanoparticles (close-packed layer of particle aggregates or scattered particle flocs) directly related to the free energy of nanoparticle adsorption at both MCT oil and liquid paraffin-water interfaces. 相似文献
18.
Using molecular dynamics simulations, we calculate the net force on a colloidal particle trapped by an optical tweezer and confined within a particle monolayer which is in motion relative to the trapped particle. The calculations are compared with recent experimental data on polystyrene particles located at an oil-water interface. Good agreement between theory and experiment is obtained over the investigated range of lattice constants for an interaction mechanism between the polystyrene particles which is dominated by an effective dipole-dipole potential. The assumed interaction mechanism is consistent with the formation of surface charge dipoles at the particle-oil interface due to the dissociaton of the hydrophilic sulfate headgroups at the surface of the polystyrene particles. A possible physical mechanism for the formation of the surface charge dipoles, involving a diffuse cloud of fully hydrated counterions, is described, and the fraction of surface groups contributing to the formation of surface charge dipoles is estimated to be of the order of 10(-1) for the present system. 相似文献
19.
Effect of charged colloidal particles on adsorption of surfactants at oil-water interface 总被引:1,自引:0,他引:1
Wang W Zhou Z Nandakumar K Xu Z Masliyah JH 《Journal of colloid and interface science》2004,274(2):625-630
A change of oil/water interfacial tension in the presence of cationic or anionic surfactants in an organic phase was observed due to the addition of charged fine solids in the aqueous phase. The charged fine solids in the aqueous phase adsorb surfactants diffused from the oil phase, thereby causing an increase in the bulk equilibrium surfactant concentration in the aqueous phase, governed by the Stern-Grahame equation. Consequently, surfactant adsorption at the oil-water interface increases, which was demonstrated from the measured reduction of the oil-water interfacial tension. The increased surfactant partition in the aqueous phase in the presence of the charged particles was confirmed by the measured decrease in the surface tension for the collected aqueous solution after solids removal, as compared with the cases without solids addition. 相似文献
20.
Boneva MP Christov NC Danov KD Kralchevsky PA 《Physical chemistry chemical physics : PCCP》2007,9(48):6371-6384
Here, we investigate experimentally and theoretically the motion of spherical glass particles of radii 240-310 microm attached to a tetradecane-water interface. Pairs of particles, which are moving toward each other under the action of lateral capillary force, are observed by optical microscopy. The purpose is to check whether the particle electric charges influence the particle motion, and whether an electric-field-induced capillary attraction could be detected. The particles have been hydrophobized by using two different procedures, which allow one to prepare charged and uncharged particles. To quantify the hydrodynamic viscous effects, we developed a semiempirical quantitative approach, whose validity was verified by control experiments with uncharged particles. An appropriate trajectory function was defined, which should increase linearly with time if the particle motion is driven solely by the gravity-induced capillary force. The analysis of the experimental results evidences for the existence of an additional attraction between two like-charged particles at the oil-water interface. This attraction exceeds the direct electrostatic repulsion between the two particles and leads to a noticeable acceleration of their motion. 相似文献