首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Singlet oxygen (1O2) can react with cholesterol (Ch) to give three possible ene-addition hydroperoxides: 3 beta-hydroxy-5 alpha-cholest-6-ene-5-hydroperoxide (5 alpha-OOH), 3 beta-hydroxycholest-4-ene-6 alpha-hydroperoxide (6 alpha-OOH), and 3 beta-hydroxycholest-4-ene-6 beta-hydroperoxide (6 beta-OOH). The rates of dye-sensitized photogeneration and also the fates of 5 alpha-OOH and 6 beta-OOH in membrane bilayers have been studied and compared. Irradiation of unilamellar [14C]Ch/phospholipid vesicles in the presence of aluminum phthalocyanine tetrasulfonate or merocyanine 540 resulted in formation of 5 alpha-OOH and 6 beta-OOH, as determined by high performance liquid chromatography with radiochemical or electrochemical detection. The initial rate of 6 beta-OOH formation was 30-35% that of 5 alpha-OOH in a variety of liposomal systems. However, after a lag, 5 alpha-OOH invariably decayed via allylic rearrangement to 7 alpha-OOH (also known to be a free radical product), whereas 6 beta-OOH accumulated in unabated fashion until Ch depletion became limiting. Photooxidation of Ch in an isolated natural membrane (erythrocyte ghost) or in L1210 leukemia cells gave similar results. When the reaction was carried out in pyridine or methanol, the rate of 6 beta-OOH formation relative to 5 alpha-OOH was reduced by approximately half, with essentially no isomerization of the latter to 7 alpha-OOH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Identification of signature products provides a powerful means for establishing whether singlet molecular oxygen (1O2) is a reactive intermediate in a photodynamic process. This approach is particularly attractive for biological systems in which direct physical measurement is difficult because of the short lifetime of 1O2. Among the many possible reporter molecules in a target system, cholesterol (Ch) has the advantage of affording a limited number of readily distinguishable oxidation products, among which are the hydroperoxides 3 beta-hydroxy-5 alpha-cholest-6-ene-5-hydroperoxide (5 alpha-OOH), 3 beta-hydroxycholest-4-ene-6 alpha-hydroperoxide (6 alpha-OOH) and 3 beta-hydroxycholest-4-ene-6 beta-hydroperoxide (6 beta-OOH) that derive specifically from 1O2 addition. The purpose of this study was to compare these species in terms of (1) rates of accumulation in photodynamically treated liposomal membranes; (2) susceptibility to iron-mediated 1 e- reduction that triggers chain peroxidative damage; (3) susceptibility to selenoperoxidase (phospholipid hydroperoxide glutathione peroxidase [PHGPX])-mediated 2 e- reduction that protects against such damage and (4) relative toxicity to mammalian cells. Our results indicate that 5 alpha-OOH is photogenerated at a much greater initial rate than 6 alpha-OOH or 6 beta-OOH. Although liposomal 5 alpha-OOH, 6 alpha-OOH, and 6 beta-OOH exhibit similar first-order decay kinetics during iron/ascorbate treatment, the former decays much more slowly during GSH/PHGPX treatment, and is more toxic to L1210 cells. These and related findings suggest that 5 alpha-OOH is potentially the most damaging ChOOH to arise in photodynamically treated cells.  相似文献   

3.
The lipophilic photosensitizing dye merocyanine 540 (MC540) is being studied intensively as an antitumor and antiviral agent. Since plasma membranes are believed to be the principal cellular targets of MC540-mediated photodamage, we have studied membrane damage in a well characterized test system, the human erythrocyte ghost. When irradiated with white light, MC540-sensitized ghosts accumulated lipid hydroperoxides (LOOHs derived from phospholipids and cholesterol) at a rate dependent on initial dye concentration. Neither desferrioxamine nor butylated hydroxytoluene inhibited LOOH formation, suggesting that Type I (iron-mediated free radical) chemistry is not important. By contrast, azide inhibited the reaction in a dose-dependent fashion, implicating a Type II (singlet oxygen, 1O2) mechanism. Stern-Volmer analysis of the data gave a 1O2 quenching constant approximately 50 times lower than that determined for an extramembranous target, lactate dehydrogenase (the latter value agreeing with literature values). This suggests that 1O2 reacts primarily at its membrane sites of origin and that azide has limited access to these sites. Using [14C]cholesterol-labeled membranes and HPLC with radiodetection, we identified 3 beta-hydroxy-5 alpha-cholest-6-ene-5-hydroperoxide as the major cholesterol photoproduct, thereby confirming 1O2 intermediacy. Irradiation of MC540-sensitized membranes in the presence of added iron and ascorbate resulted in a large burst of lipid peroxidation, as shown by thiobarbituric acid reactivity and appearance of 7-hydroperoxycholesterol and 7-hydroxycholesterol as major oxidation products. Amplification of MC540-initiated lipid peroxidation by iron/ascorbate (attributed to light-independent reduction of nascent photoperoxides, with ensuing free radical chain reactions) could prove useful in augmenting MC540's phototherapeutic effects.  相似文献   

4.
Two novel steroids, 3beta,7alpha-dihydroxy-4alpha,14alpha-dimethyl-5alpha-cholest-8-en-11-one (2) and 3beta,7beta-dihydroxy-4alpha,14alpha-dimethyl-5alpha-cholest-8-en-11-one (3) were isolated from the latex of Euphorbia officinarum. Their structures were established on the basis of NMR and MS studies.  相似文献   

5.
In the presence of exciting light, iron and reductants, the singlet oxygen (1O2)-generating sensitizer protoporphyrin IX (PpIX) induces free radical lipid peroxidation in membranes, but gradually degrades in the process. We postulated that NO, acting as a chain-breaking antioxidant, would protect PpIX against degradation and consequently prolong its ability to produce 1O2. This idea was tested by irradiating PpIX-containing liposomes (LUVs) in the presence of iron and ascorbate, and monitoring the cholesterol hydroperoxides 5alpha-OOH and 7alpha/beta-OOH as respective 1O2 and free radical reporters. 5alpha-OOH accumulation, initially linear with light fluence, slowed progressively after prolonged irradiation, whereas 7alpha/beta-OOH accumulation only accelerated after an initial lag. The active, but not spent, NO donor spermine NONOate (0.4 mM) virtually abolished 7alpha/beta-OOH buildup as well as 5alpha-OOH slowdown. Increasing membrane phospholipid unsaturation hastened the onset of rapid chain peroxidation and 5alpha-OOH slowdown. Accompanying the 5alpha-OOH effect was a steady decrease in 1O2 quantum yield and PpIX fluorescence at 632 nm, both of which were inhibited by NO. An NO-inhibitable decay of PpIX fluorescence was also observed during dark incubation of 5alpha-OOH-bearing LUVs with iron and ascorbate, confirming a link between chain peroxidation and PpIX loss. By protecting PpIX in irradiated membranes, NO might select for and prolong purely 1O2-mediated damage. Supporting this was our observation that 1O2-mediated photoinactivation of a nonmembrane target, lactate dehydrogenase, slowed concurrently with 5alpha-OOH accumulation and that spermine NONOate prevented this. Thus, NO not only protected membrane lipids against PpIX-sensitized free radical damage, but PpIX itself, thereby extending its 1O2-generating lifetime. Consistent findings were obtained using porphyrin-sensitized COH-BR1 cells. These previously unrecognized effects of NO could have important bearing on 5-aminolevulinate-based photodynamic therapy in which PpIX is metabolically deposited in tumor cells.  相似文献   

6.
[2 beta,7,7,16 beta-2H4]16 alpha,19-Dihydroxyandrost-4-ene-3,17-dione (14) and [7,7,16 beta-2H3]3 beta,16 alpha,19-trihydroxyandrost-5-en-17-one (16), with high isotopic purity, respectively, were synthesized from unlabeled 3 beta-(tert-butyldimethylsiloxy)-androst-5-ene-17 beta-yl acetate (1). The deuterium introduction at C-7 was carried out by reductive deoxygenation of the 7-keto compound 3 with dichloroaluminum deuteride and that at C-2 beta and/or C-16 beta by controlled alkaline hydrolysis of 16-bromo-17-ketone 11 or 12 with NaOD in D2O and pyridine. [7,7-2H2]3 beta-Hydroxyandrost-5-en-17-one (6), obtained from compound 1 by a five-step sequence, was converted to compound 14 or 16 by an eight-step or seven-step sequence, respectively. The labeled steroids 14 and 16 are useful as internal standards for gas chromatography-mass spectrometry analysis of the endogenous levels.  相似文献   

7.
The aerial parts of Erigeron annuus (L.) PERS., E. philadelphicus L. and E. sumatrensis RETZ. (Compositae) have been investigated chemically. A new sesquiterpenoid, 6beta,14-epoxyeudesm-4(15)-en-1beta-ol (1), and a new diterpenoid, philadelphinone (6), have been isolated from E. philadelphicus. Four new sesquiterpenoids, (7R*)-opposit-4(15)-ene-1beta,7-diol (2), 11-methoxyopposit-4(15)-en-1beta-ol (3), 15-methoxyisodauc-3-ene-1beta,5alpha-diol (4) and 10alpha-hydroxycadin-4-en-15-al (5), have been isolated from E. annuus. Compounds 2 and 4 were also isolated from E. sumatrensis. The structures of the new compounds were elucidated on the basis of their spectral data.  相似文献   

8.
A phytochemical reinvestigation of the whole plant of Euphorbia segetalis yielded five tetracyclic triterpenes: 3beta-hydroxy-cycloart-25-en-24-one (1), cycloart-25-ene-3beta,24-diol (2), cycloart-23-ene-3beta,25-diol (3), lanosta-7,9(11),24-trien-3beta-ol (4) and lanosta-7,9(11),24(31)-trien-3beta-ol (5). beta-acetoxy-cycloart-25-en-24-one (1a) and glutinol (6), lupenone (7), dammaranodienol (9), cycloartenol acetate (10), 24-methylenecycloartanol acetate (11) and beta-sitosterol (12), isolated previously, were evaluated for their antiviral activities against Herpes simplex virus (HSV) and African swine fever virus (ASFV). Lupenone exhibited strong viral plaque inhibitory effect against HSV-1 and HSV-2. The in vitro antifungal and antibacterial activities of la, cycloart-23-ene-3beta,25-diol, 3-acetate (3a) and 6-12 were also investigated.  相似文献   

9.
Microbial hydroxylation of pregnenolone derivatives   总被引:1,自引:0,他引:1  
Pregnenolone and pregnenolone acetate were incubated with the fungi Cunninghamella elegans, Rhizopus stolonifer and Gibberella fujikuroi. Incubation of with C. elegans yielded metabolites, 3beta,7beta,11alpha-trihydroxypreg-5-en-20-one, 3beta,6alpha,11alpha,12beta,15beta-pentahydroxypreg-4-en-20-one and 3beta,6beta,11alpha-trihydroxypreg-4-en-20-one, while incubation with G. fujikuroi yielded two known metabolites, 3beta,7beta-dihydroxypregn-5-en-20-one and 6beta,15beta-dihydroxypreg-4-ene-3,20-dione. Metabolites and were found to be new. Fermentation of by C. elegans yielded four known oxidative metabolites, androsta-1,4-diene-3,17-dione, 6beta,15beta-dihydroxyandrost-4-ene-3,17-dione and 11alpha,15beta-dihydroxypreg-4-ene-3,20-dione. Fermentation of with R. stolonifer yielded two known metabolites, 11alpha-hydroxypreg-4-ene-3,20-dione and. Compounds were screened for their cholinesterase inhibitory activity in a mechanism-based assay.  相似文献   

10.
The syntheses of 24-methylidene[24-14C]cholesterol ( 7a ) and of 24-methylidene[7-3H]cholesterol ( 7b ) from commercially available (20S)-3-oxopregn-4-ene-20-carbaldehyde ( 1 ) are described. The method also provides simple preparations of 3β-acetoxy[24-14C]chol-5-en-24-oic acid ( 4 ) and 24-oxocholest-5-en-3β-yl acetate ( 6b ).  相似文献   

11.
Investigation of the acetone extract of the whole plant of Euphorbia tuckeyana afforded a new cycloartane-type triterpene named as cyclotucanol. Its structure was established as cycloartane-24-methylene-3beta,25-diol (1). The known cycloartane triterpenes cycloeucalenol (2), 3beta-hydroxycycloart-25-en-24-one (3), cycloart-25-ene-3beta,24-diol (4), 25,26,27-trisnor-3beta-hydroxycycloartan-24-al (5) and cycloart-23-ene-3beta,25-diol (6) were also isolated and identified.  相似文献   

12.
Phloxine B (PhB) (2',4',5',7'-tetrabromo-4,5,6,7-tetrachlorofluorescein; D&C Red No. 28) is a red dye found in drugs, cosmetics and foods; it is also currently being evaluated as a phototoxin for the potential control of fruit flies. Previous studies have shown that PhB is an efficient photosensitizer of damage to cellular membranes; thus, exposure of the skin to the dye and sunlight or artificial light may result in phototoxicity. Therefore, we have studied the phototoxicity of PhB and its structural analogue 2',7'-dichlorofluorescein (DCF) to HaCaT keratinocytes. Anaerobic visible irradiation (>400 nm) of PhB generated a semiquinone type radical, as detected by direct electron paramagnetic resonance. Aerobic visible irradiation of a reaction mixture containing PhB, the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and nicotinamide adenine dinucleotide (reduced) generated a superoxide dismutase-sensitive DMPO/O(2)(.-) adduct. Irradiation of PhB and DCF in D(2)O generated singlet oxygen with quantum yields of 0.59 and 0.06, respectively. PhB was much more phototoxic than DCF when cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Visible irradiation of HaCaT keratinocytes in the presence of PhB (5 micro M) resulted in a 90% decrease in cell viability. 3beta-Hydroxy-5alpha-cholest-6-ene-5-hydroperoxide, a singlet oxygen photoproduct of cholesterol, was isolated from HaCaT keratinocytes irradiated in the presence of PhB. Furthermore, PhB phototoxicity was inhibited by histidine and cysteine, quenchers of singlet oxygen. PhB (0.5 microM) and light irradiation also resulted in DNA damage, as measured by the Comet assay. The phototoxicity mechanism of PhB most probably initially involves a Type-II reaction with free radicals playing a minor role. However, secondary oxidative species such as radicals generated as a result of lipid peroxidation may serve to further promote oxidative damage. Our findings suggest that concern is warranted about the use of this dye in cosmetic products, as a food additive and in insecticidal sprays.  相似文献   

13.
Spirostanol sapogenins from the underground parts of Tupistra chinensis   总被引:3,自引:0,他引:3  
Chemical examination of the underground parts of Tupistra chinensis led to the isolation of two new 5beta-spirostane type steroidal sapogenins, tupichigenin B (1) and C (2), together with two known steroidal sapogenins, ranmogenin A (3) and delta25(27)-pentrogenin (4). The structures of 1 and 2 were established as spirost-25(27)-ene-1beta,3beta,4beta,5beta,6b eta-pentaol and 1beta,2beta,3beta,4beta,5beta-pentahydroxyspi rost-25(27)-en-6-one, respectively, on the basis of detailed analysis of their physical and spectral data.  相似文献   

14.
Tan C  Kong L  Li X  Li W  Li N 《色谱》2011,29(9):937-941
云南植物露水草富含植物甾酮类成分。为了研究其中的生物活性成分,采用多种色谱分离方法(氧化铝柱色谱、硅胶柱色谱、常压反相C18柱色谱、制备薄层色谱及反相高效液相色谱等)相结合,从露水草中分离得到一种新植物甾酮。综合一维和二维核磁共振光谱以及电喷雾质谱数据分析,确定该化合物的结构为3β,4α,14α,20R,22R,25-hexahydroxy-5α-cholest-7-en-6-one,为一种较为少见的具有5α-H的植物甾酮。  相似文献   

15.
Transformation of dehydroepiandrosterone (DHEA) (1) was carried out by a plant pathogen Rhizopus stolonifer, which resulted in the production of seven metabolites. These metabolites were identified as 3beta,17beta-dihydroxyanandrost-5-ene (2), 3beta,17beta-dihydroxyandrost-4ene (3), 17beta-hydroxyandrost-4-ene-3-one (4), 3beta,11-dihydroxyandrost-4-ene-17-one (5), 3beta,7alpha-dihydroandrost-5-ene-17-one (6), 3A,7alpha,17beta-trihydroxyandrost-5-ene (7) and 11beta-hydroxyandrost-4,6-diene-3,17-dione (8). The structures of the transformed products were determined by the spectroscopic techniques.  相似文献   

16.
4Beta,19-dihydroxyandrost-5-en-17-one (6) is an excellent competitive inhibitor of estrogen synthetase (aromatase). Alternate, improved synthesis of this inhibitor was established. Treatment of 19-(tert-butyldimethylsilyloxy)androst-4-en-17-one (8) with m-chloroperbenzoic acid gave a 1.4:1 mixture of 4alpha,5alpha-epoxide 9 and its 4beta,5beta-isomer 10. The mixture was reacted with diI. HClO4 in dioxane to produce principally 4beta,5alpha-diol 11 (80%) of which acetylation followed by dehydration with SOCl2 yielded 4beta,19-diacetoxy-5-ene compound 14 in good yield. Alkaline hydrolysis of diacetate 14 gave 4beta,19-diol 6. The minimum energy conformation of the powerfull aromatase inhibitor 6 was obtained with the PM3 method and compared with that of the structurally related diol steroid, 4-ene-5beta,19-diol 3, a weak competitive inhibitor.  相似文献   

17.
本文合成了无长链的荧光黄素, 在不同溶剂中研究了荧光黄素敏化胆固醇的光氧化反应, 实验观察到, 荧光黄素敏化胆固醇在乙腈, 吡啶和苯中光氧化, 形成胆固醇的5或7位过氧化氢和胆甾烯酮, 这些胆固醇氢过氧化基可用三苯基膦将其还原成相应的醇:6-胆甾烯-3β, 5α-二醇, 5-胆甾醇-3β, 7α-二醇, 5-胆甾烯-3β-醇-7酮.  相似文献   

18.
Gong H  Williams JR 《Organic letters》2006,8(11):2253-2255
[reaction: see text] The aglycone of shark repellent pavoninin-4, (25R)-5alpha-cholestan-3alpha,15alpha,26-triol 26-acetate 1a, was synthesized from (25R)-cholest-5-en-3beta,26-diol 4 (26-hydroxycholesterol) in eight steps in 18% overall yield. Breslow's remote functionalization strategy was used as a key step to introduce the C-15alpha alcohol on a steroid D ring. An efficient synthesis of the 26-hydroxycholesterol from the 16beta hydroxyl steroid, (25R)-cholest-5-ene-3beta,16beta,26-triol (3a), is also reported.  相似文献   

19.
Singlet oxygen (1O2)-mediated photooxidation of cholesterol gives three hydroperoxide products: 3β-hydroxy-5α-cholest-6-ene-5-hydroperoxide (5α-OOH), 3β-hydroxycholest-4-ene-6α-hydrope-roxide (6α-OOH) and 3β-hydroxycholest-4-ene-6β-hydroperoxide (6β-OOH). These species have been compared with respect to photogeneration rate on the one hand and susceptibility to enzymatic reduction/ detoxification on the other, using the erythrocyte ghost as a cholesterol-containing test membrane and chloroaluminum phthalocyanine tetrasulfonate (AlPcS4) as a 1O2 sensitizer. Peroxide analysis was accomplished by high-performance liquid chromatography with mercury cathode electrochemical detection (HPLC-EC[Hg]). The initial rate of 5α-OOH accumulation in AlPcS4/light-treated ghosts was found to be about three times greater than that of 6α-OOH or 6β-OOH. Membranes irradiated in the presence of ascorbate and ferric-8-hydroxyquinoline (Fe[HQ]2, a lipophilic iron complex) accumulated lesser amounts of 5α-OOH, 6α-OOH and 6β-OOH but relatively large amounts of another peroxide pair, 3β-hydroxycholest-5-ene-7α- and 7β-hydroperoxide (7α,7β-OOH), suggestive of iron-mediated free radical peroxidation. When photoperoxidized membranes containing 5α-OOH, 6α,6β-OOH and 7α,7β-OOH (arising from 5α-OOH rearrangement) were incubated with glutathione (GSH) and phospholipid hydroperoxide glutathione peroxidase (PHGPX), all hydroperoxide species underwent HPLC-EC(Hg)-detect-able reduction to alcohols, the relative first order rate constants being as follows: 1.0 (5α-OOH), 2.0 (7α,7β-OOH), 2.4 (6α-OOH) and 3.2 (6β-OOH). Relatively rapid photogeneration and slow detoxification might make 5α-OOH more cytotoxic than the other peroxide species. To begin investigating this possibility, we inserted 5α-OOH into ghosts by transferring it from 5α-OOH-containing liposomes. When exposed to Fe(HQ)2/ascorbate, these ghosts underwent GSH/PHGPX-inhibitable chain peroxidation, as indicated by the appearance of 7α,7β-OOH, phospholipid hydroperoxides and thiobarbituric acid reactive substances. Liposomal 5α-OOH also exhibited a strong, Fe(HQ)2-enhanced, toxicity toward LI210 leukemia cells, an effect presumably mediated by damaging chain peroxidation. This appears to be the first reported example of eukaryotic cytotoxicity attributed specifically to 5α-OOH.  相似文献   

20.
By the epoxidation with alkaline hydrogen peroxide of 5-methylhepta-1,4-dien-3-one and 5-ethylhepta-1, 4-dien-3-one and the 3-methyl-7-methoxyhept-3-en-5-one and 3-ethyl-7-methoxyhept-3-en-5-one formed from them, we have obtained the mono- and diepoxy ketones corresponding to them with yields of 48–65%. It has been shown that under the influence of zinc chloride 4, 5-epoxy-3-methyl-7-methoxyheptan-5-one forms 3-methyl-7-methoxyheptane-4,5-dione and 3-methylhept-1-ene-3,4-dione. Under the same conditions, 4,5-epoxy-3-ethyl-7-methoxyheptan-5-one is converted into 3-ethyl-7-methoxyheptane-4,5-dione and 3-ethylhept-1-ene-3, 4-dione. 3-Methyl- and 3-ethylheptene-3,4-diones are also formed in the distillation of the methyl and ethyl methoxy diketones in the presence of p-toluenesulfonic acid. The IR spectra of the compounds synthesized have been recorded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号