共查询到18条相似文献,搜索用时 62 毫秒
1.
通过电化学阴极还原的方法制备了氧化镍电极材料。经250℃脱水处理后氧化镍材料表现出法拉第赝电容的电化学特性且材料单电极比容量达到210F·g-1,优于普通活性炭材料。本文采用催化裂解法制备了碳纳米管电极材料,比容量达到了42F·g-1。提出了采用电化学法沉积氧化镍和碳纳米管分别作为电容器正负极的新工艺,该工艺制备的复合型超级电容器的工作电位达到了1.6V,且具有良好的大电流放电特性。实验还表明该型氧化镍超级电容器具有极低的自放电率。 相似文献
2.
二氧化锰超级电容器电极电化学性质 总被引:1,自引:0,他引:1
采用液相法制得α-MnO2电极材料, 制备成电极并组装成对称型超级电容器. 采用恒流充放电、循环伏安、交流阻抗等方法在三电极体系下对超级电容器的正、负极进行测试, 分别研究它们在充放电过程中的电化学性能. 结果发现, 正极在0.31~0.41 V, 0.43~0.50 V (vs. Hg/HgO)发生电化学反应, 对电容器电压的影响起主要作用, 而负极则表现稳定未发生反应; 随着电极电位的增加, 反应电阻与接触电阻减小, 超级电容器电阻主要由负极决定; 负极表面双电层的形成速度小于正极, 而受电位影响的程度大于正极, 其电荷保持能力优于正极. 相似文献
3.
采用液相法制得α-MnO2电极材料, 制备成电极并组装成对称型超级电容器. 采用恒流充放电、循环伏安、交流阻抗等方法在三电极体系下对超级电容器的正、负极进行测试, 分别研究它们在充放电过程中的电化学性能. 结果发现, 正极在0.31~0.41 V, 0.43~0.50 V (vs. Hg/HgO)发生电化学反应, 对电容器电压的影响起主要作用, 而负极则表现稳定未发生反应; 随着电极电位的增加, 反应电阻与接触电阻减小, 超级电容器电阻主要由负极决定; 负极表面双电层的形成速度小于正极, 而受电位影响的程度大于正极, 其电荷保持能力优于正极. 相似文献
4.
5.
Sn掺杂二氧化锰超级电容器电极材料 总被引:3,自引:0,他引:3
用化学液相法制备了超级电容器用的Sn掺杂二氧化锰电极材料. 采用扫描电镜(SEM)、能谱仪(EDS)和X射线衍射(XRD)光谱对电极材料的形貌和物相进行表征. 结果表明, 所得样品由直径约10 nm, 长约100 nm的棒状物粘结成200-500 nm的球状物, 晶型为δ-MnO2. 循环伏安、电化学交流阻抗和恒流充放电测试表明, 化学掺杂的比例对材料的电化学性能有较大的影响. 当Mn:Sn的摩尔比为50:1时, 电极材料的比电容达到293 F·g-1, 比未掺杂的提高了64.6%. 600次充放电循环后, 比电容稳定在275 F·g-1, 表现出良好的容量保持能力. 相似文献
6.
通过化学气相沉积(CVD)的方法,在碳纳米管(CNT)薄膜及其连接处沉积热解碳(PC)来限制CNTs之间的滑移。通过扫描电镜(SEM)观察发现,热解碳(PC)的沉积使得CNT表面更加平整,且表面的孔洞更加均匀。通过应力应变及亲疏水性测试发现,CNT/PC复合薄膜的拉伸强度增加了200%,水与薄膜的静态接触角由123°减小到78°。其后通过电化学沉积的方法,制备得到CNT/PC/MnO2薄膜电极材料,通过电化学测试得知,在1 mA/cm^2的电流下单电极的比电容为326 mF/cm^2,可以稳定循环10000圈,电容的保持率稳定在100%左右。 相似文献
7.
以直立碳纳米管为基底,以pH=6.0的0.1mol/L Na2SO4 为底液,采用电化学沉积法在0.2 mol/L Mn(CH3COO)2溶液中制备了直立碳纳米管与二氧化锰复合材料。SEM测试结果表明复合材料表面呈现多孔状结构。通过循环伏安,恒流充放电,交流阻抗等电化学方法对复合材料修饰电极进行电容性质测试。实验结果表明,在1mol/L KCl 溶液中,0-0.6V(vs. 银/氯化银参比)电位窗口内此复合材料表现出优良的超电容性能。直立碳纳米管电极的比电容为16 F/g,在碳纳米管表面沉积上二氧化锰修饰层后,此复合材料电极的比电容增大至330 F/g,比电容量大幅提升近20倍。同时扫描200圈后,直立碳纳米管与二氧化锰复合材料的循环伏安曲线变化很小,说明其具有相当好的循环寿命和电容稳定性能。 相似文献
8.
碳纳米管用作超级电容器电极材料 总被引:3,自引:0,他引:3
碳纳米管由于具有化学稳定性好、比表面积大、导电性好和密度小等优点,是很有前景的超级电容器电极材料。本文介绍了碳纳米管用作超级电容器电极材料的研究现状,总结了单纯碳纳米管电极材料和碳纳米管复合物电极材料的特点与性能,并探讨了今后碳纳米管电极材料的发展方向。 相似文献
9.
10.
11.
碳纳米管电极超大容量离子电容器交流阻抗特性 总被引:18,自引:0,他引:18
采用碳纳米管作为超大容量离子电容器的电极材料,应用交流阻抗频谱法,研究了超大容量离子电容器的频率响应特性.结果表明,用碳纳米管块作电极,超大容量离子电容器在频率250 mHz以下出现“电荷饱和”;而用活性炭块作电极, 超大容量离子电容器在频率为100 mHz时仍未出现“电荷饱和”,这说明碳纳米管电极超大容量离子电容器的频率响应特性优于活性炭电极超大容量离子电容器的频率响应特性.上述两类超大容量离子电容器的阻抗谱中均出现倾角约为45°的直线段,其相位角均远小于理想电容器的相位角90°. 相似文献
12.
聚苯胺/活性碳复合型超电容器的电化学特性 总被引:7,自引:0,他引:7
电化学电容器作为一种新型储能器件具有广泛的应用.采用(NH4)2S2O8化学氧化聚合苯胺法制备了聚苯胺电极材料,采用化学物理二次催化活化法制备了高比表面积活性碳材料.并用循环伏安、恒流充放电以及交流阻抗等方法对上述电极材料的电化学特性进行了研究.实验结果表明,所制备的聚苯胺电极材料具有高于420 F•g-1的法拉第赝电容和良好的电化学特性,所制备的活性碳电极材料则具有160 F•g-1的双电层电容量.分别采用聚苯胺作为正极,活性碳作为负极,38%硫酸作为电解液制备了复合型电化学电容器.复合型电容器工作电压达到1.4 V, 电容器单体比电容达到57 F•g-1,最大比能量和最大真实比功率分别达到15.5 W•h•kg-1和2.4 W•g-1, 峰值比功率达到20.4 W•g-1,电容器循环工作寿命超过500次. 与活性碳双电层电容器相比,复合型电容器还具有较低的自放电率. 相似文献
13.
14.
以高锰酸钾和醋酸锰为前驱体, 通过液相沉淀法合成得到二氧化锰. 在不同温度热处理条件下研究二氧化锰的结构转变及其作为超级电容器电极材料的电化学行为. 采用X射线衍射(XRD), 扫描电镜(SEM), 氮气物理吸附和热重(TG)等手段表征产物的结构特点; 采用循环伏安和恒流充放电等方法表征其电化学行为. 结果表明: 合成的二氧化锰是具有中孔特征的α-MnO2, 比表面积为253 m2·g-1, 颗粒尺寸在50-100 nm之间. 350 °C以下的低温热处理使氧化锰仍能保持α-MnO2的晶体结构, 比表面积为170 m2·g-1左右, 单电极比电容值由原来未热解时的267 F·g-1增加到250 °C热处理后的286 F·g-1. 高温热处理(>450 °C)导致氧化锰逐渐过渡为α-Mn2O3, 且表面积下降约为30 m2·g-1, 比电容急剧下降. 低温热处理后氧化锰的电化学稳定性明显提高, 在50 mV·s-1的快速扫描速率下, 电极具有良好的倍率特性. 相似文献
15.
氮掺杂碳纳米管修饰电极的电化学行为 总被引:1,自引:0,他引:1
制备了氮掺杂改性的碳纳米管, 并用循环伏安法(CV)测定了多巴胺(DA)和抗坏血酸(AA)在不同氮含量的碳纳米管修饰电极上的电化学行为. 结果表明, 氮掺杂碳纳米管修饰电极对AA和DA有不同的电催化行为, 其中高氮含量修饰电极对AA的催化作用强, 而低氮含量修饰电极对DA的催化作用强. 微分脉冲伏安法(DPV)的结果显示, DA的氧化峰电流与其浓度在5.0×10-6~2.0×10-4 mol/L范围内呈良好的线性关系, 检出限达1.64×10-6 mol/L (S/N=3); AA氧化峰电流与其浓度在3.0×10-5~1.0×10-2 mol/L范围内呈良好的线性关系, 检出限达3.26×10-6 mol/L (S/N=3). 该修饰电极在AA大量存在(AA浓度为DA浓度两万倍)时可选择性地实现多巴胺的测定而不造成干扰. 相似文献
16.
以碳酸锰(MnCO3)为前体,空气氛围下采用不同温度(300℃、350℃、400℃)煅烧, 制备了3种介孔二氧化锰(MnO2)材料,分别与粘结剂混合喷涂至石英晶片作为电极,利用石英晶体微天平(QCM)监测了3种材料在0.1 mol/L Na2SO4溶液中随循环伏安过程的电化学性能变化.分析结果表明,3种材料在首圈循环中都呈现出显著的质量增加,发生了不可逆反应过程; 300℃煅烧制备的MnO2材料具备更好的电化学稳定性和容量保持能力.将300℃, 350℃和400℃煅烧的MnO2各自作为正极与活性炭负极组成超级电容器, 进行充放电测试,首圈均有35%~40%的容量损失; 三者稳定循环时放电容量分别为15.9, 12.9和11.7 mA h/g.QCM的分析与充放电测试结果相一致,表明QCM可用于比较不同介孔二氧化锰材料的电化学性能. 相似文献
17.
A stable composite film of multi-walled carbon nanotubes (MWNTs) with a Nafion™ cation exchanger membrane is prepared using a simple and reproducible cast deposition methodology. The MWNTs are cylindrical with diameters in the range of 40–60 nm and a length of up to several micrometers. They provide sufficiently high electrical conductivity across the film. Nafion™ acts both as a binder for the carbon structure and selectivity introducing matrix as shown by voltammetric experiments with the Fe(CN)63−/4− redox system.The anodic stripping responses for Cd and Pb metal accumulated from a solution of 0.2–1 µM in 0.1 M acetate buffer are demonstrated and optimized. The limit of detection under these conditions is typically 51 nM. The feasibility of using the MWNTs/Nafion™ thin film electrode for the anodic stripping voltammetric determination of cadmium and lead in 0.1 M acetate buffer in the presence of surfactants/interferents is examined. Sodium dodecyl sulfate (SDS), Triton X-100 (TX-100), dodecyl pyridinium chloride (DPC), and bovine serum albumin (BSA) were examined as four typical interferents. Relatively small enhancing and suppressing effects on the stripping peak currents for Cd and for Pb detection at the MWNTs/Nafion™ film modified electrode were observed. The MWNTs/Nafion™ thin film electrode performed very well even in the presence of the cationic surfactant DPC and could in future be of wider applicability. 相似文献
18.
通过在两种商品活性炭XC-72(比表面250m2·g-1)和YEC-8(比表面1726m·2g-1)电极表面涂刷Mn(NO3)2,并在200℃进行热分解得到表面担载氧化锰的复合材料电极.采用扫描电子显微镜(SEM)和X射线衍射(XRD)表征电极的形貌和氧化锰的晶体结构,采用循环伏安、恒流充放电和交流阻抗考察了不同电极的电化学电容性能.结果表明,Mn(NO3)2在200℃的热解产物是α-Mn2O3和α-Mn3O4的混合物.当C和MnOx的质量比为2∶1和9∶1时,XC-72/MnOx中氧化锰的比电容分别达到499和435F·g-1,YEC-8/MnOx中氧化锰的比电容分别达到554和606F·g-1,表明氧化锰的赝电容对电极比电容的贡献十分显著. 相似文献