首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquid–liquid equilibrium data are presented for the pseudoternary systems isooctane–benzene–(90 mass% methanol + 10 mass% water) at 298.15 K and isooctane–benzene–(80 mass% methanol + 20 mass% water) at 298.15 and 308.15 K, under atmospheric pressure. The experimental tie-line data obtained define the binodal curve for each one of the studied systems which depending on the amount of water present show type I or type II liquid–liquid phase diagrams. In order to obtain a general view of the effect of water on the partitioning of methanol and hence on the size of the two-phase region we have also determined experimentally ‘isowater’ tolerance curves for the system isooctane–benzene–methanol at 298.15 K, hence the tie-line data were also obtained for the ternary system. The experimental tie-line data for the four systems studied were correlated with the NRTL and UNIQUAC solution models obtaining a very good reproduction of the experimental behaviour.  相似文献   

2.
Consistent vapour–liquid equilibrium (VLE) data for the binary system 1-propanol+1-pentanol and for the ternary system water+1-propanol+1-pentanol are reported at 101.3 kPa. An instrument using ultrasound to promote the emulsification of the partly miscible liquid phases have been used in the determination of the vapour–liquid–liquid equilibrium (VLLE). The VLE and VLLE data were correlated using UNIQUAC.  相似文献   

3.
Liquid–liquid equilibrium (LLE) data of water + acetic acid + dimethyl adipate have been determined experimentally at 298.15, 308.15 and 318.15 K. Complete phase diagrams were obtained by determining binodal curve and tie-lines. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. UNIFAC and modified UNIFAC models were used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data of CH2, CH3COO, CH3, COOH, and H2O functional groups. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

4.
Solid–liquid equilibria were studied using an equation of state previously developed for fluids containing chain-like molecules. The method was used to correlate solubilities of normal alkanes and aromatic compounds with high molecular mass in hydrocarbon solvents. With one temperature independent parameter for the interaction energy, good agreement can be obtained between calculated results and experimental data for selected systems.  相似文献   

5.
The phase diagram was determined for the Na2CO3–PEG–H2O system at 25°C using PEG (poly(ethylene glycol)) with a molecular weight of 4000. Compositions of the liquid–liquid and the liquid–liquid–solid equilibria were determined using calibration curves of density and index of refraction of the solutions, and atomic absorption (AA) and X-ray diffraction analyses were made on the solids. The solid phase in equilibrium with the biphasic region was Na2CO3·H2O. Binodal curves were described using a three-parameter equation. Tie lines were described using the Othmer–Tobias and Bancroft correlation’s. Correlation coefficients for all equations exceeded 0.99. The effects of temperature (25 and 40°C) and the molecular weight of the PEG (2000, 3000, and 4000) on the binodal curve were also studied, and it was observed that the size of the biphasic region increased slightly with an increase in these variables.  相似文献   

6.
Isothermal vapour–liquid equilibria (VLE), solid–liquid equilibria and excess enthalpies have been measured for the systems cyclohexanone + cyclohexanol and 2-octanone + 1-hexanol. Additionally in this paper binary azeotropic data at different pressures for 1-pentanol + 2-heptanone and 1-hexanol + 2-octanone have been determined with the help of a wire band column. Furthermore activity coefficients at infinite dilution for methanol, ethanol, 1-butanol and 1-propanol in 2-octanone at different temperatures have been measured with the help of the dilutor technique. These data together with literature data for alcohol–ketone systems were used to fit temperature-dependent group interaction parameters for the group contribution method modified UNIFAC (Dortmund) and the group contribution equation of state VTPR.  相似文献   

7.
Commercial ceramic tubular membranes made by Tami® have been characterized by several techniques. Their pore size distributions (PSD) have been obtained by liquid–liquid displacement porosimetry (LLDP).

Computerized image analysis (CIA) of SEM pictures has been used to get information on the width of the active layer of the studied membranes. These values of thickness have helped to evaluate the porosity of the membranes and to get representative radii from measurements of the permeability to several gases and liquids. A fully automated porosimeter designed by us has been used in the determination of pore size distributions. Results show a good accuracy and reproducibility of LLDP measurements.

Binary and ternary liquid mixtures have been used to wet and penetrate into the membrane pores when performing LLDP leading to quite similar results when an effective surface tension is assigned for the ternary mixture. This procedure can be used to calibrate the technique to be extended to thick ultrafiltration and even to nanofiltration membranes.  相似文献   


8.
Liquid–liquid equilibria (LLE) of the multicomponent system water + ethanol + a synthetic reformate (composed of benzene, n-hexane, 2,2,4-trimethylpentane, and cyclohexane) was studied at atmospheric pressure and at 283.15 and 313.15 K. The mutual reformate–water solubility with addition of anhydrous ethanol was investigated. Different quantities of water were added to the blends in order to have a wide water composition spectrum, at each temperature. We conclude from our experimental results, that this multicomponent system presents a very small water tolerance and that phase separation could result a considerable loss of ethanol that is drawn into the aqueous phase. The results were also used to analyse the applicability of the UNIFAC group contribution method and the UNIQUAC model. Both models fit the experimental data with similar low average root mean square deviations (rsmd ≤ 2.05%) yielding a satisfactory equilibrium prediction for the multicomponent system, although the predicted ethanol (rsmd ≤ 4.6%) compositions are not very good. The binary interaction parameters needed for the UNIQUAC model were obtained from the UNIFAC method.  相似文献   

9.
In the present study, a new extraction method based on a three–phase system, liquid–liquid–liquid extraction, followed by dispersive liquid–liquid microextraction has been developed and validated for the extraction and preconcentration of three commonly prescribed tricyclic antidepressant drugs – amitriptyline, imipramine, and clomipramine – in human plasma prior to their analysis by gas chromatography–flame ionization detection. The three phases were an aqueous phase (plasma), acetonitrile and n–hexane. The extraction mechanism was based on the different affinities of components of the biological sample (lipids, fatty acids, pharmaceuticals, inorganic ions, etc.) toward each of the phases. This provided high selectivity toward the analytes since most interferences were transferred into n–hexane. In this procedure, a homogeneous solution of the aqueous phase (plasma) and acetonitrile (water–soluble extraction solvent) was broken by adding sodium sulfate (as a phase separating agent) and the analytes were extracted into the fine droplets of the formed acetonitrile. Next, acetonitrile phase was mixed with 1,2–dibromoethane (as a preconcentration solvent at microliter level) and then the microextraction procedure mentioned above was performed for further enrichment of the analytes. Under the optimum extraction conditions, limits of detection and lower limits of quantification for the analytes were obtained in the ranges of 0.001–0.003 and 0.003–0.010 μg mL−1, respectively. The obtained extraction recoveries were in the range of 79–98%. Intra– and inter–day precisions were < 7.5%. The validated method was successfully applied for determination of the selected drugs in human plasma samples obtained from the patients who received them.  相似文献   

10.
In the present paper, liquid–liquid equilibrium in binary systems containing the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate is studied. It was suggested in papers published by other authors that 1-ethyl-3-methylimidazolium ethylsulfate could potentially be a suitable solvent for extracting aromatic compounds from mixtures containing aliphatic hydrocarbons, such as naphtha cracker feeds. To be able to assess the selectivity of 1-ethyl-3-methylimidazolium ethylsulfate towards aliphatic, cyclic, and aromatic hydrocarbons, mutual solubilities of the ionic liquid and n-heptane, methylcyclohexane, and toluene were measured by the volumetric method. To evaluate quantitatively the quality of the experimental data and their agreement with available literature values, a correlation by two polymer-solution models, the modified Flory–Huggins equation proposed by De Sousa and Rebelo and the thermodynamic lattice model proposed by Qin and Prausnitz was carried out, the model parameters being optimized by a gnostic regression method.  相似文献   

11.
The phase equilibria in polymer–liquid 1–liquid 2 ternary systems have been calculated on the basis of the Flory-Huggins theory of polymer solutions. A new approximation method based on the “cluster” concept has been introduced for mixed solvents comprising a solvent and a nonsolvent. This concept has been verified with polystyrene–solvent–methanol systems.  相似文献   

12.
Vapour pressures for 1-methoxy-2-propanol are reported as well as the vapour–liquid equilibrium data in the two binary 2-propanol + 1-methoxy-2-propanol, and diisopropyl ether + 1-methoxy-2-propanol systems, and in the ternary 2-propanol + diisopropyl ether + 1-methoxy-2-propanol system. The data were measured isothermally at 330.00 and 340.00 K covering the pressure range 5–98 kPa. The binary vapour–liquid equilibrium data were correlated using the Wilson, NRTL, and Redlich–Kister equations; resulting parameters were then used for calculation of phase behaviour in the ternary system and for subsequent comparison with experimental data.  相似文献   

13.
Isothermal vapor–liquid equilibrium (VLE) data for five binary systems ethyl acetate + 3-methyl-1-butanol, ethanol + 3-methyl-1-butanol, ethyl acetate + 2-methyl-1-butanol, ethanol + 2-methyl-1-butanol, ethyl acetate + 2-methyl-1-propanol, involved in the alcoholic distillation have been determined experimentally by headspace gas chromatography. The composition in the liquid phase was corrected with the help of an iterative method by means of a GE model. However, due to the large density difference between the liquid and the vapor, the correction of the liquid phase composition is nearly negligible. All the binary mixtures show positive deviations from Raoult's law. The experimental VLE data are well predicted by using the modified UNIFAC model (Dortmund).  相似文献   

14.
The isobaric heat capacity for a set of critical binary mixtures composed by an associated liquid and an alkane was measured near the liquid–liquid critical point. From a careful analysis of experimental data, nonuniversal quantities such as critical temperatures and critical amplitudes were obtained. To obtain microscopic parameters that may characterise the critical behaviour of the studied systems, the critical amplitude of the correlation length was determined via two-scale factor universality. Useful insights into the influence of the molecular structure of the alkanes as well as the self-associating capability of the polar liquid on the aforementioned nonuniversal quantities are obtained.  相似文献   

15.
J. Ptek    J. Klomfar 《Fluid Phase Equilibria》2006,250(1-2):138-149
A set of empirical temperature-molar fraction expressions for solid–liquid equilibrium curves of LiBr–H2O and LiCl–H2O systems is presented. The expressions are based upon a body of experimental data that have been compiled and critically evaluated. The equations cover the full composition range for LiCl–H2O system and compositions up to the salt mole fraction of x = 0.46 (i.e. mass fraction of w=0.805) for LiBr–H2O, corresponding to transition from monohydrate to anhydrate. Temperatures and solution compositions at the eutectic point and at transition points between hydrates have been determined from intersections of the curves corresponding to the adjacent hydrate ranges of the phase diagram. Equations of a special structure were used, involving the coordinates of the transition points as parameters, which makes possible their direct non-linear optimization. To obtain more reliable results, a procedure was employed optimizing both the temperature–composition and composition–temperature equations simultaneously. The uncertainty in the obtained values of the transition point coordinates are estimated to be of the order of 1 K for temperature and 0.001 for the composition expressed in salt mole fraction. Gaps in the database are shown to give experimenters orientation for future research.  相似文献   

16.
This work deals with the phase transfer catalysed cyanide displacement reaction on 1-(4-isobutyl phenyl) ethyl chloride to synthesize 2-(4-isobutyl phenyl) propionitrile, which is an intermediate for the synthesis of ibuprofen analogs, belonging to a class of NSAID (nonsteroidal anti-inflammatory drugs). The reaction was studied using solid–liquid phase transfer catalysis (S-L PTC) with trace quantities of water, forming the so-called omega phase at 90 °C. The rates of reaction and selectivity to the product are enhanced in the S-L(org.)-L (ω) PTC in comparison with S-L PTC, which in turn is superior to L-L PTC; the latter suffers from the disadvantage of side reactions in the aqueous phase. In the current work, the effects of various parameters such as catalyst structure, catalyst loading, substrate loading and temperature were studied on the conversion and rates of reaction of 1-(4-isobutyl phenyl) ethyl chloride with solid sodium cyanide under S-L and S-L(ω)-L PTC at 90 °C with toluene as the organic solvent. Tetrabutylammonium bromide (TBAB) was found to be the best catalyst. The role of omega liquid phase in intensification of the S-L PTC was theoretically and experimentally investigated. The kinetic constants have been determined and the apparent activation energy is found as 4.2 kcal/mol, which suggests that the reaction is quite fast, which is likely to bring in mass transfer effects.  相似文献   

17.
In this work the Simulated Annealing (SA) and Particle Swarm Optimization (PSO) algorithms were employed to modeling liquid–liquid phase equilibrium data. For this purpose, some strategies for stochastic algorithms were investigated from common test functions and used in LLE parameter estimation procedure. The strategy used for the flash calculation was based on the isoactivity criteria associated with phase stability test and interpolation function for the initial estimate to improve reliability of phase equilibria calculations. It is shown that both algorithms SA and PSO were capable of estimating the parameters in models describing liquid–liquid phase behavior of binary and multicomponent systems with a good representation of the experimental data.  相似文献   

18.
Isobaric vapor–liquid equilibrium data have been measured for the ternary system acetone + 2,2′-oxybis[propane] + cyclohexane, and its constituent binaries at 94 kPa and in the temperature range 324–350 K in a vapor–liquid equilibrium still with circulation of both phases. The dependence of the interfacial tensions of these mixtures on concentration was also determined at atmospheric pressure and 303.15 K, using the maximum bubble pressure technique.From the experimental results, it follows that both the ternary and binary mixtures exhibit positive deviations from ideal behavior and, additionally, azeotropy is present for the binaries that contain acetone. The application of a model-free approach allows conclusions about the reliability of the present vapor–liquid equilibrium data for all the indicated mixtures. Furthermore, the determined interfacial tensions exhibit negative deviation from linear behavior for all the analyzed mixtures, and aneotropy is observed for the acetone + cyclohexane mixture.The vapor–liquid equilibrium data of the binary mixtures were well correlated using the NRTL, Wilson and UNIQUAC equations. In a similar manner, the interfacial tensions of the binary mixtures were smoothed using the Redlich–Kister equation. Scaling of these models to the ternary mixture allows concluding that both the vapor–liquid equilibrium data and the interfacial tensions can be reasonably predicted from binary contributions.  相似文献   

19.
The reaction between benzyl chloride and aqueous ammonium sulfide was carried out in an organic solvent – toluene, using tetrabutylammonium bromide (TBAB) as phase transfer catalyst (PTC). Two products, namely dibenzyl sulfide (DBS) and benzyl mercaptan (BM), were identified in the reaction mixture. The selectivity of DBS was maximised by changing various parameters such as NH3/H2S mole ratio, stirring speed, catalyst loading, concentration of benzyl chloride, volume of aqueous phase, and temperature. The highest selectivity of DBS obtained was about 90% after 445 min of reaction with excess benzyl chloride at 60 °C. Complete conversion of benzyl chloride could be achieved at the cost of very low selectivity of DBS and very high selectivity of BM. The apparent activation energy for the kinetically controlled reaction was found to be 12.3 kcal/mol. From the detailed study of the effects of various parameters on the reaction, a suitable mechanism was established which could explain the course of the reaction.  相似文献   

20.
Isothermal vapor–liquid equilibrium (VLE) at 333.15 K and 353.15 K for four binary mixtures of benzene + toluene, benzene + N-methylformamide, toluene + m-xylene and toluene + N-methylformamide have been obtained at pressures ranged from 0 kPa to 101.3 kPa. The NRTL, UNIQUAC and Wilson activity coefficient models have been employed to correlate experimental pressures and liquid mole fractions. The non-ideal behavior of the vapor phase has been considered by using the Soave–Redlich–Kwong equation of state in calculating the vapor mole fraction. Liquid and vapor densities were also measured by using two vibrating tube densitometers. The Pxy diagram and the activity coefficient indicate that two mixtures of benzene + toluene and toluene + m-xylene were close to the ideal solution. However, two mixtures containing N-methylformamide present a large positive deviation from the ideal solution. The excess Gibbs energy in the benzene + toluene mixture is negative indicates that it is an exothermic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号