首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文合成了两个未知氯代膦酰基丙酸甲酯和十四个新化合物,初步测定了这些化合物部分样品的生物活性。  相似文献   

2.
常温常压下光促进烯烃与一氧化碳的羰基化反应   总被引:1,自引:0,他引:1  
 报道了烯烃(环己烯和1-辛烯)与一氧化碳通过光促进实现常温常压非贵金属(钴配合物)催化的羰基化反应.研究发现,以Co(OAc)2为催化剂时,不需要加入光敏剂丙酮就能发生反应;CoSalen,吡啶-2-羧酸钴和大环配合物[Co(14)4,11-diene-N4]I2是较好的催化剂,其催化活性比Co(OAc)2高.其中,吡啶-2-羧酸钴与Co(OAc)2相同,反应中不需要光敏剂存在,其选择性很高.通过氘代丙酮和氘代甲醇同位素实验,进一步证实了反应中双键异构的存在和副产物的分析结果.  相似文献   

3.
Treatment of the nido-1-CB8H12 (1) carborane with NaBH4 in THF at ambient temperature led to the isolation of the stable [arachno-5-CB8H13]- (2(-)), which was isolated as Na+[5-CB8H13]-.1.5 THF and PPh4 +[5-CB8H13]- in almost quantitative yield. Compound 2(-) underwent a boron-degradation reaction with concentrated hydrochloric acid to afford the arachno-4-CB7H13 (3) carborane in 70 % yield, whereas reaction between 2(-) and excess phenyl acetylene in refluxing THF gave the [closo-2-CB6H7]- (4-) in 66 % yield. Protonation of the Cs+4(-) salt with concentrated H2SO4 or CF3COOH in CH2Cl2 afforded a new, highly volatile 2-CB6H8 (4) carborane in 95 % yield, the deprotonation of which with Et3N in CH2Cl2 leads quantitatively to Et3NH+[2-CB6H7](-) (Et3NH+4(-)). Both compounds 4- and 4 can be deboronated through treatment with concentrated hydrochloric acid in CH2Cl2 to yield the carbahexaborane nido-2-CB5H9 (5) in 60 % yield. New compounds 2-, 3, and 4 were structurally characterised by the ab initio/GIAO/MP2/NMR method. The method gave superior results to those carried out using GIAO-HF when relating the calculated 11B NMR chemical shifts to experimental data.  相似文献   

4.
Ab initio G3(MP2,CC)//B3LYP/6-311G** calculations have been performed to investigate the potential energy surface (PES) and mechanism of the reaction of phenyl radical with propylene followed by kinetic RRKM-ME calculations of rate constants and product branching ratios at various temperatures and pressures. The reaction can proceed either by direct hydrogen abstraction producing benzene and three C(3)H(5) radicals [1-propenyl (CH(3)CHCH), 2-propenyl (CH(3)CCH(2)), and allyl (CH(2)CHCH(2))] or by addition of phenyl to the CH or CH(2) units of propylene followed by rearrangements on the C(9)H(11) PES producing nine different products after H or CH(3) losses. The H abstraction channels are found to be kinetically preferable at temperatures relevant to combustion and to contribute 55-75% to the total product yield in the 1000-2000 K temperature range, with the allyl radical being the major product (~45%). The relative contributions of phenyl addition channels are calculated to be ~35% at 1000 K, decreasing to ~15% at 2000 K, with styrene + CH(3) and 3-phenylpropene + H being the major products. Collisional stabilization of C(6)H(5) + C(3)H(6) addition complexes is computed to be significant only at temperatures up to 1000-1200 K, depending on the pressure, and maximizes at low temperatures of 300-700 K reaching up to 90% of the total product yield. At T > 1200 K collisional stabilization becomes negligible, whereas the dissociation products, styrene plus methyl and 3-phenylpropene + H, account for up to 45% of the total product yield. The production of bicyclic aromatic species including indane C(9)H(10) is found to be negligible at all studied conditions indicating that the phenyl addition to propylene cannot be a source of polycyclic aromatic hydrocarbons (PAH) on the C(9)H(11) PES. Alternatively, the formation of a PAH molecule, indene C(9)H(8), can be accomplished through secondary reactions after activation of a major product of the C(6)H(5) + C(3)H(6) addition reaction, 3-phenylpropene, by direct hydrogen abstraction by small radicals, such as H, OH, CH(3), etc. It is shown that at typical combustion temperatures 77-90% of C(9)H(9) radicals formed by H-abstraction from 3-phenylpropene undergo a closure of a cyclopentene ring via low barriers and then lose a hydrogen atom producing indene. This results in 7.0-14.5% yield of indene relative to the initial C(6)H(5) + C(3)H(6) reactants within the 1000-2000 K temperature range.  相似文献   

5.
Alkylation of (ArNHCH2CH2){(2-C5H4N)CH2}NH with RX [RX = MeI, 4-CH2=CH(C6H4)CH2Cl) and (2-C5H5N)CH2Cl] in the presence of base has allowed access to the sterically demanding multidentate nitrogen donor ligands, {(2,4,6-Me3C6H2)NHCH2CH2}{(2-C5H4N)CH2}NMe (L1), {(2,6-Me3C6H3)NHCH2CH2}{(2-C5H4N)CH2}NCH2(C6H4)-4-CH=CH2 (L2) and (ArNHCH2CH2){(2-C5H4N)CH2}2N (Ar = 2,4-Me2C6H3 L3a, 2,6-Me2C6H3 L3b) in moderate yield. L3 can also be prepared in higher yield by the reaction of (NH2CH2CH2){(2-C5H4N)CH2}2N with the corresponding aryl bromide in the presence of base and a palladium(0) catalyst. Treatment of L1 or L2 with MCl2 [MCl2 = CoCl2.6H2O or FeCl2(THF)1.5] in THF affords the high spin complexes [(L1)MCl2](M = Co 1a, Fe 1b) and [(L2)MCl2](M = Co 2a, Fe 2b) in good yield, respectively; the molecular structure of reveals a five-coordinate metal centre with bound in a facial fashion. The six-coordinate complexes, [(L3a)MCl2](M = Co 3a, Fe 3b, Mn 3c) are accessible on treatment of tripodal L3a with MCl2. In contrast, the reaction with the more sterically encumbered leads to the pseudo-five-coordinate species [(L3b)MCl2](M = Co 4a, Fe 4b) and, in the case of manganese, dimeric [(L3b)MnCl(mu-Cl)]2 (4c); in 4a and 4b the aryl-substituted amine arm forms a partial interaction with the metal centre while in 4c the arm is pendant. The single crystal X-ray structures of , 1a, 3b.MeCN, 3c.MeCN, 4b.MeCN and 4c are described as are the solution state properties of 3b and 4b.  相似文献   

6.
羰基化反应是有机合成化学中常用的方法之一,但常规的羰基化反应大多要求高温(150~200℃)、高压(10~20 M Pa)或使用贵金属催化剂(如钌、铑、铱等),并且C1源多用一氧化碳[1].开发和利用CO2这一丰富的C1资源,并最大限度地降低其排放量具有挑战意义.但CO2活化比较困难,在通常条件下难以转化成其它化学品[2].在光促进下的羰基化反应可克服上述困难,使反应在温和条件及非贵金属催化下完成,同时可用CO2代替CO作为C1源,因此这是一个对环境友好的工艺[3].本文报道烯烃在光促进常温常压和非贵金属钴配合物催化下与二氧化碳的羰基化反应,同时通过13CO213CH3OH同位素实验,对反应产物的结构进行了分析.  相似文献   

7.
The reactions of nitriles (RCN) with arachno-4,6-C(2)B(7)H(12)(-) provide a general route to functionalized tricarbadecaboranyl anions, 6-R-nido-5,6,9-C(3)B(7)H(9)(-), R = C(6)H(5) (2(-)), NC(CH(2))(4) (4(-)), (p-BrC(6)H(4))(Me(3)SiO)CH (6(-)), C(14)H(11) (8(-)), and H(3)BNMe(2)(CH(2))(2) (10(-)). Further reaction of these anions with (eta(5)-C(5)H(5))Fe(CO)(2)I yields the functionalized ferratricarbadecaboranyl complexes 1-(eta(5)-C(5)H(5))-2-C(6)H(5)-closo-1,2,3,4-FeC(3)B(7)H(9) (3), 1-(eta(5)-C(5)H(5))-2-NC(CH(2))(4)-closo-1,2,3,4-FeC(3)B(7)H(9) (5), 1-(eta(5)-C(5)H(5))-2-[(p-BrC(6)H(4))(Me(3)SiO)CH]-closo-1,2,3,4-FeC(3)B(7)H(9) (7), 1-(eta(5)-C(5)H(5))-2-C(14)H(11)-closo-1,2,3,4-FeC(3)B(7)H(9) (9), and 1-(eta(5)-C(5)H(5))-2-H(3)BNMe(2)(CH(2))(2)-closo-1,2,3,4-FeC(3)B(7)H(9) (11). Reaction of 11 with DABCO (triethylenediamine) resulted in removal of the BH(3) group coordinated to the nitrogen of the side chain, giving 1-(eta(5)-C(5)H(5))-2-NMe(2)(CH(2))(2)-closo-1,2,3,4-FeC(3)B(7)H(9) (12). Crystallographic studies of complexes 3, 5, 7, 9, and 11 confirmed that these complexes are ferrocene analogues in which a formal Fe(2+) ion is sandwiched between the cyclopentadienyl and tricarbadecaboranyl monoanionic ligands. The metals are eta(6)-coordinated to the puckered six-membered face of the tricarbadecaboranyl cage, with the exopolyhedral substituents bonded to the low-coordinate carbon adjacent to the iron.  相似文献   

8.
The reaction of o-bromobenzoate (1 b) with benzaldehyde (2 a) in the presence of [NiBr(2)(dppe)] (dppe=1,2-bis(diphenylphosphino)ethane) and zinc powder in THF (24 hours, reflux temperature), afforded 3-phenyl-3H-isobenzofuran-1-one (3 a) in an 86 % yield. Similarly, o-iodobenzoate reacts with 2 a to give 3 a, but in a lower yield (50 %). A series of substituted aromatic and aliphatic aldehydes (2 b, 4-MeC(6)H(4)CHO; 2 c, 4-MeOC(6)H(4)CHO; 2 d, 3-MeOC(6)H(4)CHO; 2 e, 2-MeOC(6)H(4)CHO; 2 f, 4-CNC(6)H(4)CHO; 2 g, 4-(Me)(3)CC(6)H(4)CHO; 2 h, 4-C(6)H(5)C(6)H(4)CHO; 2 i, 4-ClC(6)H(4)CHO; 2 j, 4-CF(3)C(6)H(4)CHO; 2 k, CH(3)(CH(2))(5)CHO; 2 l, CH(3)(CH(2))(2)CHO) also underwent cyclization with o-bromobenzoate (1 b) producing the corresponding phthalide derivatives in moderate to excellent yields and with high chemoselectivity. Like 1 b, methyl 2-bromo-4,5-dimethoxybenzoate (1 c) reacts with tolualdehyde (2 b) to give the corresponding substituted phthalide 3 m in a 71 % yield. The methodology can be further applied to the synthesis of six-membered lactones. The reaction of methyl 2-(2-bromophenyl)acetate (1 d) with benzaldehyde under similar reaction conditions afforded six-membered lactone 3 o in a 68 % yield. A possible catalytic mechanism for this cyclization is also proposed.  相似文献   

9.
[reaction: see text] Catalytic asymmetric allylic amination of cycloalkenyl carbonates (methyl cyclohexen-2-yl carbonate, methyl cyclohepten-2-yl carbonate, methyl 5-methoxycarbonylcyclohexen-2-yl carbonate, methyl cyclohexenyl carbonate, tert-butyl 5-methoxycarbonyloxy-1,2,5,6-tetrahydropyridinedicarboxylate) with dibenzylamines ((C6H5CH2)2NH, (C6H5CH2)(4-CH3OC6H4CH2)NH, (4-CH3OC6H4CH2)2NH) was achieved in water under heterogeneous conditions by use of a palladium complex of (3R,9aS)-3-[2-(diphenylphosphino)phenyl]-2-phenyltetrahydro-1H-imidazo[1,5-a]indole-1-one anchored on polystyrene-poly(ethylene glycol) copolymer resin to give the corresponding cycloalkenylamines with high enantiomeric selectivity (90-98% ee).  相似文献   

10.
The reaction of uranyl nitrate with asymmetric [3O, N] Schiff base ligands in the presence of base yields dinuclear uranyl complexes, [UO2(HL1)]2.DMF (1), [UO2(HL2)]2.2DMF.H2O (2), and [UO2(HL3)]2.2DMF (3) with 3-(2-hydroxybenzylideneamino)propane-1,2-diol (H3L1), 4-((2,3-dihydroxypropylimino)methyl)benzene-1,3-diol (H3L2), and 3-(3,5-di-tert-butyl-2-hydroxybenzylideneamino)propane-1,2-diol (H3L3), respectively. All complexes exhibit a symmetric U2O2 core featuring a distorted pentagonal bipyramidal geometry around each uranyl center. The hydroxyl groups on the ligands are attached to the uranyl ion in chelating, bridging, and coordinate covalent bonds. Distortion in the backbone is more pronounced in 1, where the phenyl groups are on the same side of the planar U2O2 core. The phenyl groups are present on the opposite side of U2O2 core in 2 and 3 due to electronic and steric effects. A similar hydrogen-bonding pattern is observed in the solid-state structures of 1 and 3 with terminal hydroxyl groups and DMF molecules, resulting in discrete molecules. Free aryl hydroxyl groups and water molecules in 2 give rise to a two-dimensional network with water molecules in the channels of an extended corrugated sheet structure. Compound 1 in the presence of excess Ag(NO3) yields {[(UO2)(NO3)(C6H4OCOO)](NH(CH2CH3)3)}2 (4), where the geometry around the uranyl center is hexagonal bipyrimidal. Two-phase extraction studies of uranium from aqueous media employing H3L3 indicate 99% reduction of uranyl ion at higher pH.  相似文献   

11.
徐崇福  房俊卓  陈苗  朱晓斌 《化学学报》2008,66(10):1239-1244
用五羰基锰钾盐和相应的卤代物在乙醚中的金属化反应合成了五羰基锰烷基合物 (CO)5MnR(R = CH3,p-CH2C6H4CH3, p-CH2C6H4OCH3 ),产率达到72-93%,将这些化合物与1-2当量(CH3)2(C6H5)SiH和(CH3)(C6H5)2SiH的C6D6溶液在5℃光解,分别得到五羰基锰硅烷基化合物(CO)5MnSi(C6H5)(CH3)2和(CO)5MnSi(C6H5)2(CH3)(产率达到70-88%)。在光化学反应中,还观察到相应甲烷,对二甲苯,和对甲基苯甲醚的定量生成,以及少量的Mn2(CO)10(<2%-4%),(CO)4MnH(SiR3)2(<9%)副产物。  相似文献   

12.
The photopromoted carbonylation of bromobenzene with carbon monoxide catalyzed by inexpensive commercially available cobalt salts[Co(OAc)_2,CoCl_2]was carried out under ambient conditions.The results revealed that methyl benzoate was produced in the presence of basic additives(CH_3ONa,NaOAc or(n-C_4H_9)_3N).The catalytic activity of Co(OAc)_2was higher than that of CoCl_2.Furthermore,the activity of the carbonylation was greatly improved by addition of acetophenone,e.g.both the yield and selectivity of t...  相似文献   

13.
<正> Guanidinium bis (o - aminophenylarsenic) hexamolybdate belongs to monoclinic space group P21/c,with a=10. 217(2),b= 18. 870(2),c= 10. 939(2)A,β = 102. 82(3)°,Z = 2,V=2056. 4A3,and Dc=2. 477 g·cm-3. Each molecule contains one [(o-NH2C6H4As)2Mo6O24]4- anion and four CN3H6+ cations. In the anion,six distorted MoO6 octahedra are connected with edges-sharing to form a six-membered Mo ring which is capped above and below by two o - aminophenylarsenic groups. There is half a molecule in an asymmetric unit. It is interesting that both phenyl planes are almost perpendicular to the plane of the Mo atoms. The structure of the anion is similar to that of [ (CH3 As)2Mo6O24]4-,[(n-C3H7As)2Mo6O24]4- or [(C6H5CH2As)2Mo6O24]4-. This is the first example of this type of compounds in which the As atom is directly connected to a substituted phenyl group.  相似文献   

14.
氯苄双羰化合成苯丙酮酸新型催化剂吡啶-2-羧酸钴 研究   总被引:2,自引:0,他引:2  
李光兴  蔡华强  张雄 《化学学报》2001,59(8):1306-1309
实验发现吡啶-2-羧酸钴是氯苄双羰化合成苯丙酮的新颖催化剂。在水和1,4-二氧六环混合溶剂中,当T=353K,p=2.4mPa,V(H2O):V(dioxane)=1:1.1,氧化钙与氯苄克分子比为1.00,氯苄与吡啶-2-羰酸钴的摩尔比为1:0.05时,氯苄转化率为74.5%,选择性达99%,苯丙酮酸产率为73.8%。研究了反应条件对苯丙酮酸产率和选择性的影响,并使用IR,UV,GC-MS等对产物进行了测定。  相似文献   

15.
[C(4)H(3)N(CH(2)NMe(2))-2]AlMe(2) (1) is prepared in 88% yield by the reaction of substituted pyrrole [C(4)H(4)N(CH(2)NMe(2))-2] with 1 equiv of AlMe(3) in methylene chloride. Reaction of compound 1 with 1 equiv of phenyl isocyanate in toluene generates a seven-membered cycloaluminum compound [C(4)H(3)N[CH(2)NPh(CONMe(2))]-2] AlMe(2) (2). The phenyl isocyanate was inserted into the aluminum and dimethylamino nitrogen bond and induced an unusual rearrangement which results in C-N bond breaking and formation. A control experiment shows that the reaction of substituted pyrrole [C(4)H(4)N(CH(2)NMe(2))-2] with 1 equiv of phenyl isocyanate in diethyl ether yields a pyrrolyl attached urea derivative [C(4)H(3)N(CH(2)NMe(2))-2-[C(=O)NHPh]-1] (3). The demethanation reaction of AlMe(3) with 1 equiv of 3 in methylene chloride at 0 degrees C afforded O-bounded and N-bounded aluminum dimethyl compounds [C(4)H(3)N(CH(2)NMe(2))-2-[C(=O)NPh]-1]AlMe(2) (4a) and [C(4)H(3)N(CH(2)NMe(2))-2-[CO(=NPh)]-1]AlMe(2) (4b) in a total 78% yield after recrystallization. Both 4a and 4b are observed in (1)H NMR spectra; however, the relative ratio of 4a and 4b depends on the solvent used. Two equivalents of AlMe(3) was reacted with 3 in methylene chloride to yield a dinuclear aluminum compound AlMe(3)[C(4)H(3)N(CH(2)NMe(2))-2-[C(=O)NPh]-1] AlMe(2) (5). Reaction of 5 with another equivalent of ligand 3 results in the re-formation of compounds 4a and 4b.  相似文献   

16.
The reaction of P(CH2OH)3 (I) and P(C6H5)(CH2OH)2 (II) with RuCl3 in methanol eliminates two equivalents of formaldehyde to yield the mixed tertiary and secondary phosphine complexes all-trans-[RuCl2(P(CH2OH)3)2(P(CH2OH)2H)2] (1) and [RuCl2(P(C6H5)(CH2OH)2)2(P(C6H5)(CH2OH)H)2] (2), respectively. There is a high degree of hydrogen-bonding interactions between the hydroxymethyl groups in 1 and 2, although the phenyl groups of the latter reduce the extent of the network compared to 1. The generation of these mixed secondary and tertiary phosphine complexes is unprecedented. Under the same reaction conditions, the tris(hydroxypropyl)phosphine III formed no ruthenium complex. The reaction of P(CH2OH)3, P(C6H5)(CH2OH)2 and P{(CH2)3OH}3 with [RhCl(1,5-cod)]2 in an aqueous/dichloromethane biphasic medium yielded [RhH2(P(CH2OH)3)4]+ (3), [RhH2(P(C6H5)(CH2OH)2)4]+ (4) and [Rh(P(C6H5)(CH2OH)2)4]+ (5) and [Rh(P{(CH2)3OH}3)4]+ (6), respectively. Treating 5 with dihydrogen rapidly gave 4. The hydroxypropyl compound 6 formed the corresponding dihydride much more slowly in aqueous solution, although [RhH2(P{(CH2)3OH}3)4]+ (7) was readily formed by reaction with dihydrogen. Two separate reaction pathways are therefore involved; for P(CH2OH)3 and to a lesser extent P(C6H5)(CH2OH)2, the hydride source in the product is likely to be the aqueous solvent or the hydroxyl protons, whilst for P{(CH2)3OH}3 an oxidative addition of H2 is favoured. The protic nature of and was illustrated by the H-D exchange observed in d2-water. Dihydrides 3 and 4 reacted with carbon monoxide to yield the dicarbonyl cations [Rh(CO)2(P(CH2OH)3)3]+ (8) and [Rh(CO)2(P(C6H5)(CH2OH)2)3]+ (9). The analogous experiment with [RhH2(P{(CH2)3OH}3)4]+ resulted in phosphine exchange, although our experimental evidence points to the possibility of more than one fluxional process in solution.  相似文献   

17.
The new oligophosphines [H2P(CH2)2]2PH, [H2P(CH2)2P(H)CH2]2, and{[(H2P(CH2)2]2PCH2}2 have been made by hydrophosphination of diethyl vinylphosphonate (2) with H2P(CH2)2PH2 (1), using different ratios of 2/1, followed by LiAlH4 reduction of the phosphonate intermediates; the three phosphonate precursors were obtained as oils of varying purity (approximately 90-95%) in low (approximately 20%) to almost quantitative yield. The tri-, tetra-, and hexaphosphines were then treated with formaldehyde in the presence of hydrochloric acid to generate the corresponding water-soluble (hydroxymethyl)phosphonium chlorides {(HOCH2)3P[(CH2)2P(CH2OH)2]n(CH2)2P(CH2OH)3}Cl m (n = 1, m = 3; n = 2, m = 4) and {[(HOCH2)3P(CH2)2]2P(CH2OH)CH2}2Cl6 that were characterized by NMR spectroscopy and elemental analysis. The known (hydroxymethyl)bisphosphonium chloride [(HOCH2)3P(CH2)2]2Cl2 was similarly prepared from H2P(CH2)2PH2, and the determined crystal structure revealed strong hydrogen bonding between the chloride anions and the hydrogen atoms of the hydroxymethyl groups.  相似文献   

18.
Spectroscopic and photochemical studies of several benzoyl-functionalized ferrocene complexes in nonaqueous solvents are reported. Bands observed above 300 nm in the electronic absorption spectrum of the unsubstituted complex, Fe(eta(5)-C(5)H(5))(2), and assigned to ligand field transitions shift to longer wavelengths and intensify upon introduction of a benzoyl group into one or both cyclopentadienide rings. Such behavior suggests that these transitions have acquired some charge-transfer character. Visible-light (546 nm) irradiation of 1,1'-dibenzoylferrocene, III, dissolved in CH(3)CN, CH(3)OH, or ethyl alpha-cyanopropionate causes ring-metal cleavage to produce the benzoylcyclopentadienide ion, C(6)H(5)C(O)C(5)H(4)(-), and the corresponding half-sandwich cationic complex, Fe[(eta(5)-C(5)H(4))C(O)C(6)H(5)](S)(3)(+) (S is solvent). The disappearance quantum yield, phi(dis), for III is 0.45 in CH(3)OH and 0.28 in ethyl alpha-cyanopropionate and is unaffected by the presence of dissolved O(2), added H(2)O (10 000 ppm), or added methanesulfonic acid (30 ppm). 1,1'-Dibenzoylferrocenes containing substitutents on both phenyl rings undergo photoinduced ring-metal cleavage in CH(3)OH with phi(dis) values very similar to that of III, while monobenzoylferrocenes are appreciably less photoreactive. A mechanism that accommodates the photochemical behavior of benzoyl-functionalized ferrocene complexes is discussed. In addition, a previous suggestion concerning the role of III in the photoinitiated anionic polymerization of an alpha-cyanoacrylate monomer is reconsidered in light of the present study.  相似文献   

19.
Photopromoted carbonylation of 1-bromo-6-chlorohexane with CO catalyzed by CuBr2 and CdI2 has been carried out under ambient conditions. The results indicate that the carbonylation proceeds with the major product of chloroester ClCH2(CH2)5COOCH3 under catalysis of CuBr2. Furthermore, the activity of the carbonylation can be improved by addition of basic additives (NaOAc, Na3PO4 or (n-C4H9)3N). Among these additives, (n-C4H9)3N is the most efficient in terms of the yield of ClCH2(CH2)5COOCH3. However, the methoxycarbonyl substituting chlorine product of BrCH2(CH2)5COOCH3 is not obtained in the presence of CdI2. This is quite different from the carbonylation of monochloroalkane.  相似文献   

20.
The complexes [Ni(eta(3)-CH(2)CHCH(2))Br(kappa(1)P-PR(2)CH(2)CH=CH(2))] (R = Ph 1, (i)Pr2 ) and [Ni(eta(3)-CH(2)C(R')CH(2))(kappa(1)P-PR(2)CH(2)CH=CH(2))(2)][BAr'(4)] (R' = H, R = Ph 4a, R = (i)Pr 4b; R' = CH(3), R = Ph 5a, R = (i)Pr 5b; Ar' = 3,5-C(6)H(3)(CF(3))(2)) have been prepared and characterized. The X-ray crystal structures of 1, 2 and 5b have been determined. 4a-b and 5a-b are catalyst precursors for the oligomerization of RC(6)H(4)CH=CH(2) to oligostyrene (R = H) or oligo(4-methylstyrene) (R = CH(3)) respectively, without the need of a co-catalyst such as methylalumoxane. The catalytic activities range from moderate to high. The oligomerization reactions are carried out in the temperature interval 25-40 degrees C in 1,2-dichloroethane, using an olefin/catalyst ratio equal to 200, yielding oligostyrenes with a high isotactic fraction content P(m), with M(n) in the range 700-1900 Dalton, and polydispersities between 1.22 and 1.64. The cationic complexes 4a-b and 5a-b are also effective catalyst precursors for the hydrosilylation reactions of styrene or 4-methylstyrene with PhSiH(3) in 1,2-dichloroethane at 40 degrees C using an olefin/catalyst ratio equal to 100, leading selectively to RC(6)H(4)CH(SiH(2)Ph)CH(3) (R = H, CH(3)) in 50-79% yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号