首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mashhadizadeh MH  Shoaei IS  Monadi N 《Talanta》2004,64(4):1048-1052
A new PVC membrane potentiometric sensor that is highly selective to Fe(III) ions was prepared by using 2-[(2-hydroxy-1-propenyl-buta-1,3-dienylimino)-methyl]-4-p-tolylazo-phenol [HPDTP] as a suitable carrier. The electrode exhibits a linear response for iron(III) ions over a wide concentration range (3.5 × 10−6 to 4.0 × 10−2) with a super Nernstian slope of 28.5 (±0.5) per decade. The electrode can be used in the pH range from 4.5 to 6.5. The proposed sensor shows fairly a good discriminating ability towards Fe3+ ion in comparison to some hard and soft metals such as Fe2+, Cd2+, Cu2+, Al3+ and Ca2+. It has a response time of <15 s and can be used for at least 2 months without any measurable divergence in response characteristics. The electrode was used in the direct determination of Fe3+ in aqueous samples and as an indicator electrode in potentiometric titration of Fe(III) ions.  相似文献   

2.
The suitability of a xanthone derivative, 1-hydroxy-3-methyl-9H-xanthen-9-one (HMX) as a neutral ionophore for the preparation of a polyvinylchloride (PVC) membrane electrode for aluminum(III) ions was investigated. The prepared electrode exhibits a Nernstian response for Al3+ ions over a wide concentration range (1.0 × 10−6 to 1.6 × 10−1 M) with a limit of detection 6.0 × 10−7 M. It has a relatively fast response time and can be used for at least three months without any considerable divergence in potentials. The proposed membrane electrode revealed very good selectivity for Al3+ ions over a wide variety of other cations and could be used at a working pH range of 3.0-8.5. It was used as an indicator electrode in potentiometric titration of aluminum ions with EDTA and in the determination of Al3+ in different real samples.  相似文献   

3.
A new PVC membrane based strontium(II) ion-selective electrode has been constructed using acetophenone semicarbazone as a neutral carrier. The sensor exhibits a Nerstian response for strontium(II) ion over a wide concentration range 1.0 × 10−2–1.0 × 10−7 M with the slope of 29.4 mV/per decade. The limit of detection was 2.7 × 10−8 M. It was relatively fast response time (<10 s for concentration ⩾1.0 × 10−3 and <15 s for concentration of ⩾1.0 × 10−6 M) and can be used for 8 months without any considerable divergence in potentials. The proposed sensor revealed relatively good selectivity and high sensitivity for strontium(II) over a mono, di, trivalent cation and can be used in a pH range of 2.5–10.5. It was also successfully used as an indicator electrode in potentiometer titration and in the analysis of concentration in various real samples.  相似文献   

4.
A PVC membrane electrode for Ni2+ ions based on a recently synthesized mercapto compound, as an ionophore was prepared. The electrode exhibits a Nernstian slope of 28-30 mV per concentration decade at wide concentration range of (1.0×10−2-1.0×10−7 M). It has a fast response time of <15 s and can be used for at least 4 weeks. The potentiometric response is independent of the pH of the test solution in the pH range 5-8.5. The proposed electrode revealed good selectivities over a wide variety of other cations including alkali, alkaline earth, transition and heavy metal ions. It was successfully applied to the direct determination and potentiometric titration of nickel ion with EDTA.  相似文献   

5.
A highly selective PVC membrane electrode for Al3+ based on salicylaldehyde salicyloyl hydrazone as a neutral carrier has been prepared and studied. The sensor exhibits a good response for Al3+ over a linear range of 9.0 × 10‐6 to 1.0 × 10‐1 mol/L, with a Nernstian slope of 20.0 ± 0.2 mV/decade and detection limit of 7.0 × 10‐6 mol/L. Selectivity coefficients determined by the method of separate solution indicate high selectivity for Al3+. The response mechanism was discussed in view of UV‐Vis spectroscopy technique and the A.C. impedance technique. It was used as an indicator electrode in potentiometric titration of Al3+ with EDTA and in the determination of Al3+ in real samples. The electrode has a relatively fast response time, long life time and satisfactory stability.  相似文献   

6.
Dimethyl-4,4-dimethoxy-5,6,5′,6′-dimethylene dioxy biphenyl-2,2-dicarboxylate (DDB) liver drug is used as a novel ionophore in plasticized poly (vinyl chloride) (PVC) matrix membrane sensors for barium ions. Optimum performance characteristics are displayed by membrane sensor incorporating DDB ionophore, potassium tetrakis(4-chlorophenyl)borate as lipophilic salt, and o-nitrophenyloctyl ether as plasticizer. The sensor exhibits a linear response over the concentration range 10−1-10−5 mol l−1 BaCl2 with a Nernstian slope of 30 mV per decade and high selectivity towards Ba2+ with respect to Li+, Na+, K+, Rb+, NH4+, Mg2+, Ca2+, Sr2+, Mn2+, Co2+, Ni2+, Cd2+, Al3+, La3+, and Ce3+ ions. The sensor response is stable over a wide pH range (4-9) and the lifetime is about 2 months. The proposed sensor is successfully applied to the determination of Ba2+contents of some rocks.  相似文献   

7.
Al3+ selective sensor has been fabricated from poly(vinyl chloride) (PVC) matrix membranes containing neutral carrier morin as ionophore. Best performance was exhibited by the membrane having composition as morin:PVC:sodium tetraphenyl borate:tri-n-butylphosphate in the ratio 5:150:5:150 (w/w, mg). This membrane worked well over a wide activity range of 5.0 × 10−7 to 1.0 × 10−1 M of Al3+ with a Nernstian slope of 19.7 ± 0.1 mV/decade of Al3+ activity and a limit of detection 3.2 × 10−7 M. The response time of the sensor is ∼5 s and membrane could be used over a period of 2 months with good reproducibility. The proposed sensor works well over a pH range (3.5-5.0) and demonstrates good discriminating power over a number of mono-, di- and trivalent cations. The sensor can also be used in partially non-aqueous media having up to 20% (v/v) methanol, ethanol or acetone content with no significant change in the value of slope or working activity range. The sensor has also been used in the potentiometric titration of Al3+ with EDTA and for its determination in zinc plating mud and red mud.  相似文献   

8.
《Electroanalysis》2004,16(11):922-927
A novel chloride PVC‐based membrane sensor based on a ruthenium(III) Schiff's base complex, as an excellent neutral carrier, has been developed. The ruthenium complex, in combination with a ketonic plasticizer and a cationic additive led to ISEs with fundamental characteristics, such as slope sensitivity, short response times and selectivity coefficients, which were sufficient for practical applications. The sensor with composition of 30% PVC, 62% benzyl acetate, 5% ruthenium(III) Schiff's base complex and 3% hexadecyltrimethyl ammonium bromide displays near‐Nernstian behavior in a wide concentration range (1.0×10?1–3.0×10?6 M with slope of ?54.5±0.5) with a detection limit of 2.0×10?6 M (71.0 ng per mL). The response of the electrode is independent on pH in the range of 4.0–10.0 and can it be used for at least ten weeks. The proposed electrode shows a very short response time (<20 s) in whole concentration range. The sensor displays high selectivity toward chloride ions over several organic and inorganic anions. It was successfully applied for the determination of chloride in serum samples. It was also used as an indicator electrode in the potentiometric titration of chloride ions with silver nitrate solution.  相似文献   

9.
Singh AK  Mehtab S  Saxena P 《Talanta》2006,69(5):1143-1148
A novel bromide ion-selective PVC membrane sensor based on 2,3,10,11-tetraphenyl-1,4,9,12-tetraazacyclohexadeca-1,3,9,11-tetraene zinc(II)complex (I) as carrier has been developed. The electrode exhibited wide working concentration range 2.2 × 10−6 to 1.0 × 10−1 M and a limit of detection as 1.4 × 10−6 M with a Nernstian slope of 59.2 ± 0.5 mV per decade. The response time of electrode was 20 s over entire concentration range. The electrode possesses the advantages of low resistance, fast response and good selectivities for bromide over a variety of other anions and could be used in a pH range of 3.5–9.5. It was successfully used as an indicator electrode in the potentiometric titration of bromide ions with silver ion and also in the determination of bromide in real samples.  相似文献   

10.
N1,N2-Bis[1-(2-hydroxyphenyl)methylidene]ethanedihydrazide(MEH) was used as new compound which plays the role of an excellent ion carrier in the fabrication of a Ho(Ⅲ) membrane electrode.The electrode shows a good selectivity for Ho(Ⅲ) ion with respect to most common cations including alkali,alkaline earth,transition and heavy metal ions.This electrode has a wide linear dynamic range from 1.0×10-6 to 1.0×10-2 mol/L with a Nernstian slope of 19.8±0.3 mV per decade and a low detection limit of 5.8×10-7 mol/L in the pH range of 2.5-9.8,while the response time was rapid(<10 s).The suggested sensor was applied to the determination of Ho(Ⅲ) ions in tap water and river water samples.  相似文献   

11.
A novel tetrachlorothallate (III) (TCT)-selective membrane sensor consisting of tetrachlorothallate (III)-2,3,5-triphenyl-2-H-tetrazolium ion pair dispersed in a PVC matrix plasticized with dioctylphthalate is described. The electrode shows a stable, near-Nernstian response for 1×10−3-4×10−6 M thallium (III) at 25 °C with an anionic slope of 56.5±0.5 over the pH range 3-6. The lower detection limit and the response time are 2×10−6 M and 30-60 s, respectively. Selectivity coefficients for Tl(III) relative to a number of interfering substances were investigated. There is negligible interference from many cations and anions; however, iodide and bromide are significantly interfere. The determination of 0.5-200 μg ml−1 of Tl(III) in aqueous solutions shows an average recovery of 99.0% and a mean relative standard deviation of 1.4% at 50.0 μg ml−1. The direct determination of Tl(III) in spiked wastewater gave results that compare favorably with those obtained by the atomic absorption spectrometric method. The electrode was successfully applied for the determination of thallium in zinc concentrate. Also the tetrachlorothallate electrode has been utilized as an end point indicator electrode for the determination of thallium using potentiometric titration.  相似文献   

12.
A simple, long life, rapid response and sensitive barium(II)-PVC membrane sensor that typically follows Nernstian behavior has been developed for the assay of barium(II) ions. The developed sensor has been made by incorporating the complex ion associate of barium(II)-Rose Bengal (Ba-RB) as an ionophore into a plasticized PVC matrix. The sensor is stable and exhibited fast potential response of 20 s and gave a good linear response with a Nernstian slope of 28.5 ± 0.4 mV/decade of activity within the concentration range 5 × 10−5 to 10−1 M over a wide range of pH 4.5-10.0 for barium(II) ions. The developed sensor showed comparatively good selectivity for barium(II) ions with respect to other alkali, alkaline earth, transition and heavy metal ions. The plasticizer o-nitrophenyloctyl ether controlled significantly the calibration slope and the lifetime of the fabricated sensor. The proposed sensor was used successfully for the analysis of barium(II) ions in wastewater samples and in lithophone pigment with excellent recovery percentages in the range 98.9-99.8 ± 1.6%. The determination of sulphate in fresh and potable water samples with the developed sensor has been also achieved successfully. The described sensor provides a reliable means with good correlation with the data obtained by atomic absorption spectrometry (AAS) and other spectrophotometric methods for the analysis of trace amounts of barium(II) and/or sulphate ions in different matrices.  相似文献   

13.
《Electroanalysis》2006,18(12):1186-1192
A PVC membrane electrode using [Bzo2Me2Ph2(16)hexaeneN4] ( I ) as ionophore, oleic acid as lipophilic additive and o‐nitrophenyloctyl ether as plasticizer has been investigated as Zn(II)‐selective electrode. The membrane incorporating 34.9% (w/w) PVC, 2.3% I , 4.7% OA and 58.1% o‐NPOE gave linear response over the concentration range 2.82×10?6?1.0×10?1 M with a Nernstian slope of 28.5±0.2 mV/decade of concentration with a detection limit of 2.24×10?6 M (0.146 ppm) and showed a response time of less than 10 s and could be used in pH range 2.5–8.5. High selectivity was obtained over a wide variety of metal ions. The proposed electrode was successfully used as an indicator electrode in potentiometric titration of zinc ions with EDTA and for determination of zinc in real samples.  相似文献   

14.
The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, N,N′-[bis(pyridin-2-yl)formylidene]butane-1,4-diamine (S1) and N-(2-pyridinylmethylene)-1,2-benzenediamine (S2) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (S1) (2.15%):PVC (32.2%):o-NPOE (64.5%):KTpClPB (1.07%). The proposed electrode exhibits Nernstian response in the concentration range of 7.9 × 10−8 to 1.0 × 10−1 M Cd2+ with limit of detection 5.0 × 10−8 M, performs satisfactorily over wide pH range (2.0-8.0) with a fast response time (10 s). The sensor has been found to work satisfactorily in partially non-aqueous media up to 30% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in real samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.  相似文献   

15.
5-Chloro-2-methoxybenzoates of La(III), Gd(III) and Lu(III) were synthesized as penta-, mono- and tetrahydrates with a metal to ligand ratio of 1:3 and with white colour typical of La(III), Gd(III) and Lu(III) ions. The complexes were characterized by elemental analysis, IR and FIR spectra, thermogravimetric and diffractometric studies. The carboxylate group appears to be a symmetrical, bidentate, chelating ligand. The complexes are polycrystalline compounds. Their thermal stabilities were studied in air and inert atmospheres. When heated they dehydrate to form anhydrous salts which next in air are decomposed through oxychlorides to the oxides of the respective metals while in inert atmosphere to the mixture of oxides, oxychlorides of lanthanides and carbon. The most thermally stable in air, nitrogen and argon atmospheres is 5-chloro-2-methoxybenzoate of Gd(III). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
A PVC membrane electrode for lead ions based on 5,5′-dithiobis-(2-nitrobenzoic acid) as membrane carrier was prepared. The electrode exhibits a Nernstian response for Pb2+ over a wide concentration range (1.0×10−2–4.0×10−6 M). It has a relatively fast response time and can be used for at least 3 months without any divergence in potentials. The proposed electrode revealed good selectivities for Pb2+ over a wide variety of other metal ions and could be used in a pH range of 2.0–7.0. It was used as an indicator electrode in potentiometric titration of lead ions and in direct determination of lead in water samples.  相似文献   

17.
A new polyvinyl chloride (PVC) membrane electrode that is highly selective to Hg(II) ions was prepared by using bis[5-((4-nitrophenyl)azo salicylaldehyde)] (BNAS) as a suitable neutral carrier. The sensor exhibits a Nernstian response for mercury ions over a wide concentration range (5.0×10−2-7.0×10−7 M) with a slope of 30±1 mV per decade. It has a response time of <10 s and can be used for at least 3 months without any measurable divergence in potential. The electrode can be used in the pH range from 1.0 to 3.5. The proposed sensor shows fairly good discriminating ability towards Hg2+ ion in comparison with some hard and soft metals. The electrode was used in the direct determination of Hg2+ in aqueous solution and as an indicator electrode in potentiometric titration of mercury ions.  相似文献   

18.
A plasticized poly (vinyl chloride) membrane electrode based on 1,3-bis(2-cyanobenzene)triazene (CBT) for highly selective determination of platinum(II) (in PtCl42− form) is developed. The electrode showed a good Nernstian response (29.8 ± 0.3 mV decade−1) over a wide concentration range (1.0 × 10−6 to 1.0 × 10−2 mol L−1). The limit of detection was 5.0 × 10−7 mol L−1. The electrode has a response time of about 40 s, and it can be used for at least 1 month without observing any considerable deviation from Nernstian response. The proposed electrode revealed an excellent selectivity toward platinum(II) ion over a wide variety of alkali, alkaline earth, transition, and heavy metal ions, and it could be used in the pH range of 3.2-5.1. The practical utility of the electrode has been demonstrated by its use in determination of platinum ion in, alloy, tap, mineral and river water samples.  相似文献   

19.
The formation ofPAN complexes in the systemsLn(III)—PAN—alcohol-water (where:Ln(III)=Ho, Lu and alcohol=ethanol,n-propanol,iso-propanol) was investigated by a spectrophotometric method. Equilibrium constants for the reactionLn 3+ + HLLnL 2+ + H+ (HL=PAN) and stability constants of complexesLnL 2+ were calculated.
Untersuchungen zur Komplexbildung von Ho(III) und Lu(III) mit 1-(2-Pyridylazo)-2-naphthol (PAN) in alkoholisch-;wä\rigen Lösungen
Zusammenfassung Die Bildung der Komplexe vonPAN in den SystemenLn(III)—PAN—Alkohol-Wasser (Ln(III)=Ho, Lu; Alkohol=Ethanol,n-Propanol,iso-Propanol) wurde mit einer spektrophotometrischen Methode untersucht. Die Gleichgewichtskonstanten der ReaktionenLn 3+ + HLLnL 2+ + H+ (HL==PAN) und die Stabilitätskonstanten der KomplexeLnL 2+ wurden berechnet.
  相似文献   

20.
《Analytical letters》2012,45(13):2322-2343
Abstract

In this research, a novel thulium(III) potentiometric membrane sensor based on 4-methyl-1,2-bis(2-pyridinecarboxamido) benzene (MPB) is described. The sensor exhibits a Nernstian response over a concentration range of 1.0 × 10?7 M to 1.0 × 10?1 M, with a detection limit of 9.0 × 10?8 M. The best performance was achieved with a membrane composition of 30% PVC, 60% nitrobenzene (NB), 6% MPB, and 4% sodium tetraphenylborate (NaTPB). It was found that at the pH range of 3.6 to 9.0, the potential response of the sensor was not affected by the pH. Furthermore, the electrode presents satisfactory reproducibility, very fast response time (15 s), and relatively good discriminating ability for Tm(III) ions with respect to many common cations and lanthanide ions. The validation of the proposed electrode was tested by using Coal and Fuel Ash (FFA 1 Fly Ash) as a Certified Reference Material (CRM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号