首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Guest exchange in an M4L6 supramolecular host has been evaluated to determine whether host rupture is required for guest ingress and egress. Two mechanistic models were evaluated: one requiring partial dissociation of the host structure to create a portal for guest passage and one necessitating deformation of the host structure to create a dilated aperture for guest passage without host rupture. Three related lines of inquiry support the nondissociative guest exchange mechanism. (a) Equally facile guest exchange is observed in labile ([Ga4L6]12-) and inert ([Ti4L6]8- and [Ge4L6]8-) hosts. (b) Molecular mechanics calculations demonstrate that the structural deformations required for enlargement of an M4L6 aperture in a nonrupture or nondissociative guest exchange mechanism are plausible. (c) As predicted by the calculations, CoCp*2+, a sterically demanding guest, significantly inhibits guest exchange. These results bring new insight to the application of the M4L6 supramolecular host for encapsulated reaction chemistry for which there are now several examples.  相似文献   

2.
Dark-green platy crystals of the new compound Pb31O22Br10Cl8 (1) have been obtained by rapid quenching of a lead oxide halide melt. The structure of 1 (triclinic, P1, a = 12.1192(7) angstroms, b = 16.2489(10) angstroms, c = 18.3007(11) angstroms, alpha = 93.104(2) degrees, beta = 95.809(2) degrees, gamma = 111.252(1) degrees, V = 3325.4(3) angstroms3, Z = 2) can be viewed as incorporation of [PbX6]4- halide units (X = Br, Cl) into the defect PbO matrix. The latter represents a two-dimensional [O22Pb30]16+ cationic layer of OPb4 tetrahedra that can be derived from the [OPb] tetrahedral layer observed in tetragonal PbO. The layer consists of 22 symmetrically inequivalent OPb4 tetrahedra and represents the topologically most complicated arrangement of tetrahedra known to date.  相似文献   

3.
The benzene-o-dithiol/catechol ligands H4-2 and H4-3 react with [TiO(acac)2] to give the dinuclear, double-stranded anionic complexes [Ti2(L)2(mu-OCH3)2](2-) ([22](2-), L=2(4-); [23](2-), L=3(4-)). NMR spectroscopic investigations reveal that the complex anion [Ti2(2)2(mu-OCH3)(2)](2-) is formed as a mixture of three of four possible isomers/pairs of enantiomers, whereas only one isomer of the complex anion [Ti2(3)2(mu-OCH3)(2)](2-) is obtained. The crystal structure analysis of (PNP)2[Ti2(3)2(mu-OCH3)2] shows a parallel orientation of the ligand strands, whereas the structure determination for (AsPh4)2[Ti2(2)2(mu-OCH3)2] does not yield conclusive results about the orientation of the ligand strands due the presence of different isomers in solution, the possible co-crystallisation of different isomers and severe disorder in the crystal. NMR spectroscopy shows that ligand H4-3 reacts at elevated temperature with [TiO(acac)2] to give the triple-stranded helicate (PNP)4[Ti2(3)3] ((PNP)4[24]) as a mixture of two isomers, one with a parallel orientation of the ligand strands and one with an antiparallel orientation. Exclusively the triple-stranded helicates [Ti2(L)(3)](4-) ([25](4-), L=1(4-); [26](2-), L=4(4-)) are formed in the reaction of ligands H4-1 and H4-4 with [TiO(acac)2]. The molecular structures of Na(PNP)3[Ti2(1)3]CH(3)OHH(2)OEt(2)O (Na(PNP)3[25]CH(3)OHH(2)OEt(2)O) and Na(1.5)(PNP)(6.5)[Ti2(4)3]2.3 DMF (Na(1.5)(PNP)(6.5)[26]2.3 DMF) reveal a parallel orientation of the ligand strands in both complexes, which is retained in solution. The sodium cations present in the crystal structures lead to two different kinds of aggregation in the solid state. Na-[25]-Na-[25]-Na polymeric chains are formed from compound Na(PNP)3[25], with the sodium cations coordinated by the carbonyl groups of two ligand strands from two different [Ti2(1)3](4-) ions in addition to solvent molecules. In contrast to this, two [Ti2(4)3](4-) ions are connected by a sodium cation that is coordinated by the three meta oxygen atoms of the catecholato groups of each complex tetraanion to form a central {NaO6} octahedron in the anionic pentanuclear complex {[26]-Na-[26]}(7-).  相似文献   

4.
The 2,2,2-crypt salts of the Tl4Se8(4-) and [Tl2Se4(2-)]infinity1 anions have been obtained by extraction of the ternary alloy NaTl0.5Se in ethylenediamine (en) in the presence of 2,2,2-crypt and 18-crown-6 followed by vapor-phase diffusion of THF into the en extract. The [2,2,2-crypt-Na]4[Tl4Se8].en crystallizes in the monoclinic space group P2(1)/n, with Z = 2 and a = 14.768(3) angstroms, b = 16.635(3) angstroms, c = 21.254(4) angstroms, beta = 94.17(3) degrees at -123 degrees C, and the [2,2,2-crypt-Na]2[Tl2Se4]infinity1.en crystallizes in the monoclinic space group P2(1)/c, with Z = 4 and a = 14.246(2) angstroms, b = 14.360(3) angstroms, c = 26.673(8) angstroms, beta = 99.87(3) degrees at -123 degrees C. The TlIII anions, Tl2Se6(6-) and Tl3Se7(5-), and the mixed oxidation state TlI/TlIII anion, Tl3Se6(5-), have been obtained by extraction of NaTl0.5Se and NaTlSe in en, in the presence of 2,2,2-crypt and/or in liquid NH3, and have been characterized in solution by low-temperature 77Se, 203Tl, and 205Tl NMR spectroscopy. The 1J(203,205Tl-77Se) and 2J(203,205Tl-203,205Tl) couplings of the three anions have been used to arrive at their solution structures by detailed analyses and simulations of all spin multiplets that comprise the 205,203Tl NMR subspectra arising from natural abundance 205,203Tl and 77Se isotopomer distributions. The structure of Tl2Se6(6-) is based on a Tl2Se2 ring in which each thallium is bonded to two exo-selenium atoms so that these thalliums are four-coordinate and possess a formal oxidation state of +3. The Tl4Se8(4-) anion is formally derived from the Tl2Se6(6-) anion by coordination of each pair of terminal Se atoms to the TlIII atom of a TlSe+ cation. The structure of the [Tl2Se4(2-)]infinity1 anion is comprised of edge-sharing distorted TlSe4 tetrahedra that form infinite, one-dimensional [Tl2Se42-]infinity1 chains. The structures of Tl3Se6(5-) and Tl3Se7(5-) are derived from Tl4Se4-cubes in which one thallium atom has been removed and two and three exo-selenium atoms are bonded to thallium atoms, respectively, so that each is four-coordinate and possesses a formal oxidation state of +3 with the remaining three-coordinate thallium atom in the +1 oxidation state. Quantum mechanical calculations at the MP2 level of theory show that the Tl2Se6(6-), Tl3Se6(5-), Tl3Se7(5-), and Tl4Se8(4-) anions exhibit true minima and display geometries that are in agreement with their experimental structures. Natural bond orbital and electron localization function analyses were utilized in describing the bonding in the present and previously published Tl/Se anions, and showed that the Tl2Se6(6-), Tl3Se6(5-), Tl3Se7(5-), and Tl4Se8(4-) anions are electron-precise rings and cages.  相似文献   

5.
Temperature-dependent 1H NMR studies prove homochiral, racemic [([symbol: see text])/([symbol: see text])]-((NH4)4[symbol: see text] [Mg4(L1)6]) (1) to be kinetically stable on the NMR timescale. Due to steric reasons, rotation around the central C-C single bond in (L1)2- is blocked, which prevents 1 from enantiomerisation. Most interestingly, however, the 1H NMR spectrum of racemic 2a reveals dynamic temperature dependence. This phenomenon can be explained by simultaneous Bailar twists at the four octahedrally coordinated magnesium centres, synchronised with the sterically unhindered atropenantiomerisation processes around the C-C single bonds of the six ligands (L2)2-, leading to the unprecedented enantiomerisation ([symbol: see text])-2a [symbol: see text] ([symbol: see text])-2a. The profound nondissociative rearrangement occurs without the formation of diastereoisomers. Supplementary support for the interpretation of the temperature-dependent dynamic 1H NMR spectra of 2a is presented by additional studies of [([symbol: see text])/([symbol: see text])]-((EtNH3)4 [symbol: see text] [Mg4(L2)6]) (2b). In 2a and 2b, the ether methylene protons exhibit identical temperature dependence. However, with addition, the methylene protons of the ethyl ammonium groups of 2b display similar temperature dependence as the ligand ether methylene protons.  相似文献   

6.
The complex Co4 1(2)8- is a tetranuclear cobalt(II) cage compound that assembles in aqueous solutions above pH 4 and is capable of encapsulating a variety of organic guest molecules, for example, benzene, hexane, chlorobutane, butanol, and ethyl acetate. Ligand 1 is a resorc[4]arene-based molecule with iminodiacetate moieties appended to its upper rim. 1H NMR studies of Co4 1(2)8-.guest complexes demonstrate inclusion of nonpolar hydrocarbons, substituted phenyls, alcohols, halogen-containing hydrocarbons, and polar organic molecules. The complex Co4 1(2)8- acts as an NMR shift reagent and causes substantial upfield isotropic hydrogen shifts (-30 to -40 ppm) in the guest molecule and separation of the guest hydrogen chemical shifts by typically 12 ppm. The complex Co4 1(2)8- will encapsulate molecules with fewer than eight atoms in a linear chain, mono- and disubstituted benzenes, and polar molecules with greater than two carbon atoms. The solid-state structure of Ba4[Co4 1(2).C6H5C2H5] shows a disordered guest molecule encapsulated within the cavity of Co4 1(2)8-. The cavity dimensions, bond lengths, and bond angles of Ba4[Co4 1(2).C6H5C2H5] are very similar to those determined in Ba4[Co4 1(2).6H2O].  相似文献   

7.
Wu Y  Bensch W 《Inorganic chemistry》2007,46(15):6170-6177
The reactions of Ti with in situ formed polythiophosphate fluxes of A(2)S(3) (A = Rb, Cs), P(2)S(5), and S at 500 degrees C result in the formation of two new quaternary titanium thiophosphates with compositions Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) and Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2). Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) crystallizes in the chiral hexagonal space group P6(3) (No. 173) with lattice parameters a = 18.2475(9) Angstrom, c = 6.8687(3) Angstrom, V = 1980.7(2) Angstrom(3), Z = 2. Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) crystallizes in the noncentrosymmetric monoclinic space group Cc (No. 9) with a = 21.9709(14) Angstrom, b = 6.9093(3) Angstrom, c = 17.1489(10) Angstrom, beta = 98.79(1) degrees, V = 2572.7(2) Angstrom(3), Z = 4. In the structure of 1 TiS(6) octahedra, three [PS(4)] tetrahedra, and the hitherto unknown [P(4)S(13)](6-) anion are joined to form two different types of helical chains. These chains are connected yielding two different helical tunnels being directed along [001]. The tunnels are occupied by the Rb+ ions. The [P(4)S(13)](6-) anion is generated by three [PS(4)] tetrahedra sharing corners with one [PS(4)] group in the center of the starlike anion. The P atoms of the three [PS(4)] tetrahedra attached to the central [PS(4)] group define an equilateral triangle. The [P(4)S(13)](6-) anion may be regarded as a new member of the [P(n)S(3n+1)]((n+2)-) series. The structure of Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) consists of the one-dimensional polar tunnels containing the Cs(+) cations. The rare [P(2)S(8)](4-) anion which is composed of two [PS(4)] tetrahedra joined by a S(2)(2-) anion is a fundamental building unit in the structure of 2. One-dimensional undulated chains being directed along [100] are joined by [PS(4)] tetrahedra to form the three-dimensional network with polar tunnels running along [010]. The compounds are characterized with IR, Raman spectroscopy, and UV/vis diffuse reflectance spectroscopy.  相似文献   

8.
The preparation and structural characterization of a series of group 4 complexes supported by 2,2'-phenylphosphinobis(4,6-di-tert-butylphenolate) ([OPO]2-) are described. The reaction of either H2[OPO] with Ti(OR)4 (R = Et, iPr) or Li2[OPO] with TiCl4(THF)2 produced yellowish-orange crystals of Ti[OPO]2, regardless of the stoichiometry of the starting materials employed. Comproportionation of the bis-ligand complex Ti[OPO]2 with 1 equiv of TiCl4(THF)2 led to the formation of [OPO]TiCl2(THF) as brownish-red crystals. Surprisingly, treatment of H2[OPO] with [(Me3Si)2N]2MCl2 (M = Zr, Hf), irrespective of the molar ratio, generated colorless crystals of the corresponding bis-ligand complex [OPO]2M(OH2) as an aqua adduct. The solution and solid-state structures of these group 4 complexes were all characterized by multinuclear NMR spectroscopy and X-ray crystallography, respectively.  相似文献   

9.
[reaction: see text] The complexation of p-sulfonatocalix[4]arene (CX4) with 2,3-diazabicyclo[2.2.1]hept-2-ene (1), 2,3-diazabicyclo[2.2.2]oct-2-ene (2), 2,3-diazabicyclo[3.2.2]non-2-ene (3), 1-methyl-4-isopropyl-2,3-diazabicyclo[2.2.2]oct-2-ene (4), and 1-phenyl-2,3-diazabicyclo[2.2.2]oct-2-ene (5) was studied in D2O at pD 7.4 by 1H NMR spectroscopy. The formation of deep inclusion complexes was indicated by large upfield 1H NMR shifts of the guest protons (up to 2.6 ppm), which were also used to assign, in combination with 2D ROESY spectra, a preferential inclusion of the isopropyl group of 4 and a dominant inclusion of the azo bicyclic residue for 5. The bicyclic azoalkanes 1-3 showed exceptionally high binding constants on the order of 1000 M(-1), 1-2 orders of magnitude larger than for previously investigated noncharged organic guest molecules. The strong binding was attributed to the spherical shape complementarity between the guest and the conical cavity offered by CX4. Interestingly, although the derivatives 4 and 5 are more hydrophobic, they showed a 2-3 times weaker binding, which was again attributed to the deviation from spherical shape in these bridgehead-substituted derivatives. The preferential inclusion of the hydrophilic but spherical bicyclic residue of 5 rather than the hydrophobic aromatic phenyl group provides a unique observation in aqueous host-guest chemistry and corroborates the pronounced spherical shape affinity of CX4.  相似文献   

10.
The ligation properties of three new upper-rim-substituted calix[4]arene ligands, 5,17-bis(hydroxymethyl)-tetra-n-butoxycalix[4]arene ((HOCH2)2-nBu4Clx, 7), 5,17-bis((diphenylphosphinito)methoxy)-tetra-n-butoxycalix[4]arene ((PPh2OCH2)2-nBu4Clx, 8), and 5,17-bis((diphenylphosphino)methyl)-tetra-n-butoxycalix[4]arene ((PPh2CH2)2-nBu4Clx, 10) are reported herein. The newly prepared compounds differ from previously reported diametrically substituted calix[4]arene derivatives in that the lower-rim substituent was n-butyl. The presence of this lower-rim substituent did not reduce the inherent crystallinity of these complexes as purification of all materials occurred via simple crystallizations. The key precursor for the syntheses of 8 and 10 was 7, acquisition of which occurred in six steps starting from tetra-tert-butylcalix[4]arene, 1. Calix[4]arene derivatives include, tetra-n-butoxycalix[4]arene (nBu4Clx, 3), 5,11,17,23-tetrabromo-tetra-n-butoxycalix[4]arene (Br4-nBu4Clx, 4), 5,17-dibromo-tetra-n-butoxycalix[4]arene (Br2-nBu4Clx, 5), 5,17-bis(formyl)-tetra-n-butoxycalix[4]arene ((CHO)2-nBu4Clx, 6), and 5,17-bis(chloromethyl)-tetra-n-butoxycalix[4]arene ((ClCH2)2-nBu4Clx, 9), all of which were synthesized using modifications of existing procedures. Characterization of all compounds occurred, when possible, using 1H, 13C, and 31P NMR, elemental analyses, FAB-MS, ESI-MS, FT-IR, and X-ray crystallography. The solid-state structures of all calix[4]arene intermediates and ligands showed that the annulus adopted the pinched-cone conformation in which the average C(5)...C(17) intraannular separation was 4.5 +/- 0.4 A. Reaction of 7 with CpTiMe3 yielded the cis-chelate, CpTi(Me)[(OCH2)2-nBu4Clx] (11), quantitatively. Data obtained using ESI-MS (positive-ion mode) confirmed the monomer formulation showed above, and 1H NMR spectra provided sufficient information to deduce the nature of the Ti coordination sphere. Reaction of 8 with cis-Cl2Pd(NCPh)2 in refluxing benzene afforded cis-Cl2Pd[(PPh2OCH2)2-nBu4Clx] (12) in good yields. The monomeric identity of this compound was verified by both X-ray crystallography and positive-ion ESI-MS. The cis-bidentate calix[4]arene ligand did not undergo any noticeable contortion upon chelation of the PdCl2 fragment. Acid-promoted decomposition of 12 occurred in the presence of adventitious HCl and gaseous HCl, and the products of this decomposition were 9 and [mu2-ClPd(PPh2OH)(PPh2O)]2. In addition, chelates of 8 that contained Mo(CO)3L (L = NCMe (14a), NCEt (14b), and CO (14c)) showed that the mode of coordination was relatively insensitive to the identity of the metal. X-ray crystallography afforded views of the solid-state structures of 14b,c and, like 12, showed that the Mo(CO)3L fragment resided above the pinched-cone of the calix[4]arene. 1H NMR revealed that C-H/pi interactions existed between L (14a,b) and a phenyl ring of the coordinated phosphinite. Finally, the bis(diphenylphosphine)calix[4]arene ligand (10) readily coordinated the Mo(CO)3L species, but the reaction did not go to completion, as evidenced by 1H NMR, even after a 5 day reaction time. Data suggest that the product is similar to that observed for 12 and 14, but the incomplete reaction complicated attempts to obtain pure material and prohibited definitive assignment of the coordination array.  相似文献   

11.
According to recent reports, supramolecular complexes of the pyrylium cation with cucurbit[x]urils (CB[x], x = 7, 8) show promising photoluminescence suitable for electroluminescent devices. In turn, photoluminescence seems to be related to the stereochemistry of the complexes; however, that has been controversial. Here, we report that in H(2)O, 2,6-disubsituted-4-phenyl pyryliums (Pylm) form dimers quantitatively (equilibrium constants >10(4) M(-1)), but they enter as such only in the larger CB[8]. In terms of orientation, (1)H NMR shows that Me-Pylm, Ph-Pylm, and t-Bu-Pylm insert their 4-phenyl groups in either the CB[7] or CB[8] cavity. The orientation of iPr-Pylm in the iPr-Pylm@CB[7] complex is similar. Experimental conclusions are supported by DFT calculations using the M062X functional and the 6-31G(d) basis set. In the case of (iPr-Pylm)(2)@CB[8], (1)H NMR of both the guest and the host indicates that both guests might enter CB[8] from the same side with their iPr groups in the cavity, but DFT calculations leave room for ambiguity. In addition to the size and hydrophobicity of the 2,6-substituents of the guests, as well as the size and flexibility of the hosts, theory reveals the importance of explicit solvation (H(2)O) and finite temperature effects (particularly for (1)H NMR shielding calculations) in the determination of the stereochemistry of those complexes.  相似文献   

12.
The first examples of CT salts based on [Ni(dtcr)2] dianions (1) (dtcr = dithiocroconate = 4,5-disulfanylcyclopent-4-ene-1,2,3-trionate), (TTF)2[Ni(dtcr)2] (TTF = tetrathiafulvalene) (2) and (ET)2[Ni(dtcr)2] [ET = bis(ethylenedithio)tetrathiafulvalene] (3) are reported. The redox-active dianion 1, containing oxo-groups in the periphery of the molecule, has been selected to investigate the role of the oxo-groups in promoting intermolecular interactions and hopefully their conducting properties. The salts 2 and 3 have been prepared by electrocrystallisation methods and 3 shows a semi-metallic behaviour: sigma = 1 x 10(-3) omega(-1) cm(-1) at room temperature, with a low activation energy 60 meV, while crystals of 2 were unsuitable for conductivity measurements. The X-ray structural characterisation shows an alternate dianion-(cation)2 stacking and the capability of the oxo-groups to promote interstack contacts. In 2, the TTF donors are present as face-to-face dimers of monocations (D2)2+. The stacking arrangement is different in 3, where ET monocations stack along two directions ([110] and [110]) in the same manner, with the repeating sequence (ET)-(ET)-[Ni(dtcr)2]-(ET)-(ET) and are almost parallel to each other, with interplanar distances of 3.575 angstroms. Both structures are built on a dianion and two donor molecules, each one with a charge of +1. Diffuse reflectance combined with vibrational spectra complement structural results well. Crystal data: both 2 and 3 crystallise in the monoclinic space group P2(1)/c with a = 8.6340(8) angstroms, b = 21.586(2) angstroms, c = 7.5960(8) angstroms, beta = 95.625(11) degrees and V = 1408.9(2) angstroms3 for 2 and with a = 9.3700(7), b = 7.4410(6), c = 28.278(2) angstroms, beta = 99.039(6) degrees, V = 1947.1(3) angstroms3 for 3.  相似文献   

13.
The binding interactions in aqueous solution between the dicationic guest diquat (DQ(2+)) and the cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) hosts were investigated by (1)H NMR, UV/Vis, and fluorescence spectroscopy; mass spectrometry; single-crystal X-ray diffraction; and electrochemical techniques. The binding data were compared with previously reported results for the related paraquat guest (PQ(2+)). DQ(2+) was found to bind poorly (K=350 m(-1)) inside CB7 and more effectively (K=4.8 x 10(4) m(-1)) inside CB8. One-electron reduction led to increased binding affinity with both hosts (K(r)=1 x 10(4) m(-1) with CB7 and K(r)=6 x 10(5) m(-1) for CB8). While (1)H NMR spectroscopic data revealed that DQ(2+) is not fully included by CB7, the crystal structure of the CB8DQ(2+) complex-obtained from single-crystal X-ray diffraction-clearly establishes its inclusion nature. Overall, both diquat and its one-electron reduced radical cation are bound more effectively by CB8 than by CB7. In contrast to this, paraquat exhibits selectivity for CB7, but its radical cation forms a highly stable dimer inside CB8. These differences highlight the pronounced sensitivity of cucurbit[n]uril hosts to guest features such as charge, charge distribution and shape.  相似文献   

14.
Reactions between the Os(VI)-nitrido complexes, [OsVI(L2)(Cl)3(N)] (L2 = 2,2'-bipyridine (bpy) ([1]), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), 1,10-phenanthroline (phen), and 4,7-diphenyl-1,10-phenanthroline (Ph2phen)), and bis-(triphenylphosphoranylidene)ammonium azide (PPNN3) in dry CH3CN at 60 degrees C under N2 give the corresponding Os(IV)-azidoimido complexes, [OsIV(L2)(Cl)3(NN3)]- (L2 = bpy = [2]-, L2 = Me2bpy = [3]-, L2 = phen = [4]-, and L2 = Ph2phen = [5]-) as their PPN+ salts. The formulation of the N42- ligand has been substantiated by 15N-labeling, IR, and 15N NMR measurements. Hydroxylation of [2]- at Nalpha with O<--NMe3.3H2O occurs to give the Os(IV)-azidohydroxoamido complex, [OsIV(bpy)(Cl)3(N(OH)N3)] ([6]), which, when deprotonated, undergoes dinitrogen elimination to give the Os(II)-dinitrogen oxide complex, [OsII(bpy)(Cl)3(N2O)]- ([7]-). They are the first well-characterized examples of each kind of complex for Os.  相似文献   

15.
The self-assembled supramolecular host [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) can encapsulate cationic guest molecules within its hydrophobic cavity and catalyze the chemical transformations of bound guests. The cavity of host 1 is lined with aromatic naphthalene groups, which create a magnetically shielded interior environment, resulting in upfield shifted (1-3 ppm) NMR resonances for encapsulated guest molecules. Using gauge independent atomic orbital (GIAO) DFT computations, we show that (1)H NMR chemical shifts for guests encapsulated in 1 can be efficiently and accurately calculated and that valuable structural information is obtained by comparing calculated and experimental chemical shifts. The (1)H NMR chemical shift calculations are used to map the magnetic environment of the interior of 1, discriminate between different host-guest geometries, and explain the unexpected downfield chemical shift observed for a particular guest molecule interacting with host 1.  相似文献   

16.
A novel [2]pseudorotaxane of cucurbit[6]uril(CB[6]) and 1‐butyl‐3‐methyl‐imidazolium bromide ([C4mim]Br) was synthesized by directly mixing the host and the guest molecules in non‐aqueous system. Structural characterizations of the [2]pseudorotaxane were carried out by 1D, 2D NMR and X‐ray crystallography techniques both in solution and in crystal structure. The crystal structure demonstrated that CB[6] and [C4mim]Br formed a complex with the ratio 1:1, in which one guest [C4mim]Br was included inside the CB[6], while two other [C4mim]Br molecules were free and surrounded the [2]pseudorotaxane as solvent molecules, which could stabilize the crystal structure through hydrogen bonds. Moreover, parallel solvent channels consisting by free [C4mim]Br molecules occupied the pores among the frame of the pseudorotaxanes and formed zigzag lines in the crystal structure. [C4mim]Br can serve as not only the guest reactant but also the solvent in the formation of [2]pseudorotaxane formation.  相似文献   

17.
Two coordination polymers formulated [Fe(pmd)2[Ag(CN)2]2] (pmd = pyrimidine) have been synthesized and characterized. Both polymers, considered to be architectural isomers, display different crystal structures and magnetic properties. Isomer 1 crystallizes in the monoclinic C2/c space group with a = 6.9750(8) angstroms, b = 16.1700(9) angstroms, c = 14.2020(8) angstroms, beta = 97.954(2) degrees, V = 1586.37(14) angstroms3, and Z = 4. The crystal structure of isomer 2 has been studied at 250 and 150 K. At both temperatures, 2 displays the orthorhombic Pccn space group with a = 15.7700(2) [14.8950(2)] angstroms, b = 8.2980(4) [8.1580(4)] angstroms, c = 13.4180(6) [13.3480(5)] angstroms, V = 1755.87(14) [1621.96(10)] angstroms3, and Z = 4 for 250 [150] K. The iron(II) ions define distorted octahedral [FeN6] chromophores in both isomers. The equatorial positions are occupied by four [Ag(CN)2]- bridging ligands, which connect the defining layers of two iron(II) ions. Isomer 1 has two crystallographically distinct [Ag(CN)2]- groups; one is essentially linear, while the other is severely distorted [C(5)-Ag(2)-C(5i)] = 138.8(5) degrees. This fact facilitates the parallel interpenetration of two layers, which in addition show short Ag(1)....Ag(2) interactions (distance Ag(1)....Ag(2) = 2.9972(10) angstroms). Isomer 2 shows only one type of Ag atom, which is slightly bent [C-Ag-C = 161.54(12) degrees], and as a consequence, the layers defined are not interpenetrated. In both cases, the axial positions are occupied by the pmd ligands which interact with the Ag atoms of adjacent layers defining a 3D coordination polymer. Compound 1 is high spin in the whole range of temperatures, while 2 undergoes a cooperative high-spin <--> low-spin effect centered at ca. 184 K with a hysteresis loop ca. 5 K wide. The experimental enthalpy and entropy variations were 11.5 +/- 0.4 kJ mol(-1) and 64 +/- 3 J K(-1) mol(-1). Consistency between the experimental thermodynamic data and the magnetic data was checked in the frame of regular solution theory.  相似文献   

18.
The rigid tris- and bis(catecholamide) ligands H(6)A, H(4)B and H(4)C form tetrahedral clusters of the type M(4)L(4) and M(4)L(6) through self-assembly reactions with tri- and tetravalent metal ions such as Ga(III), Fe(III), Ti(IV) and Sn(IV). General design principles for the synthesis of such clusters are presented with an emphasis on geometric requirements and kinetic and thermodynamic considerations. The solution and solid-state characterization of these complexes is presented, and their dynamic solution behavior is described. The tris-catecholamide H(6)A forms M(4)L(4) tetrahedra with Ga(III), Ti(IV), and Sn(IV); (Et(3)N)(8)[Ti(4)A(4)] crystallizes in R3(-)c (No. 167), with a = 22.6143(5) A, c = 106.038(2) A. The cluster is a racemic mixture of homoconfigurational tetrahedra (all Delta or all Lambda at the metal centers within a given cluster). Though the synthetic procedure for synthesis of the cluster is markedly metal-dependent, extensive electrospray mass spectrometry investigations show that the M(4)A(4) (M = Ga(III), Ti(IV), and Sn(IV)) clusters are remarkably stable once formed. Two approaches are presented for the formation of M(4)L(6) tetrahedral clusters. Of the bis(catecholamide) ligands, H(4)B forms an M(4)L(6) tetrahedron (M = Ga(III)) based on an "edge-on" design, while H(4)C forms an M(4)L(6) tetrahedron (M = Ga(III), Fe(III)) based on a "face-on" strategy. K(5)[Et(4)N](7)[Fe(4)C(6)] crystallizes in I43(-)d (No. 220) with a = 43.706(8) A. This M(4)L(6) tetrahedral cluster is also a racemic mixture of homoconfigurational tetrahedra and has a cavity large enough to encapsulate a molecule of Et(4)N(+). This host-guest interaction is maintained in solution as revealed by NMR investigations of the Ga(III) complex.  相似文献   

19.
The guest-induced synthesis of a [Ga4L6](12-) tetrahedral metal-ligand cluster resulting from a predictive design strategy is described. Each of the six dicatecholamide ligands spans an edge of the molecular tetrahedron with four Ga(III) ions at the vertices. Small cationic species not only were found to occupy the large void volume (ca. 300-400 A(3)) inside this cluster but also are necessary thermodynamically to drive cluster assembly via formation of a host-guest complex. NMe4(+), NEt4(+), and NPr4(+) all suit this purpose, and in addition the cluster exhibits a preference in the binding of these three guests: NEt4(+) is bound 300 times more strongly than NPr4(+), which is in turn bound 4 times more strongly than NMe4(+), as determined by 1H NMR spectroscopy. The K6(NEt4)6[Ga4L6] cluster was characterized by NMR spectroscopy, high- (Fourier transform ion cyclotron resonance, FT-ICR) and low-resolution electrospray ionization (ESI) mass spectrometry, elemental analysis, and single-crystal X-ray diffraction. The binding of the NEt4(+) guest molecule was confirmed in the solid state structure, which reveals that the molecule contains large channels in the solid state. As this result exemplifies, it is suggested that guest molecules will play an increasing role in the formation of larger, predesigned metal-ligand clusters.  相似文献   

20.
The condensation of 5-chlorocarbonyl-2,2'-bipyridine with a variety of rigid aromatic diamines, L, gave a series of new bisamido-2,2'-bipyridine based ligands (L = 4,4'-methylenediamine, L1; L = 1,1-bis(4-aminophenyl)cyclohexane, L2; L = 1,1-bis(4-amino-3,5-dimethylphenyl)cyclohexane, L3) capable of forming dinuclear triple helicate complexes on coordination to Fe(II). The reaction of various Fe(II) salts with gave: {[Fe2(L1)3](BF4)4, 1; [Fe2(L1)3](ClO4)4, 2; [Fe2(L1)3]Cl4, 3; [Fe2(L1)3](SO4)2, 4; [Fe2(L2)3](BF4)4, 5; [Fe2(L2)3]Cl4, 6; [Fe2(L3)3](BF4)4; 7; [Fe2(L3)3]Cl4, 8; and [Fe2(L3)3](SO4)2, 9, as determined by UV-Vis, IR and 1H NMR spectroscopy, electrospray mass spectrometry (ESMS) and elemental analyses. A UV-Vis complexometric titration experiment between L3 and Fe(BF4)2 established conclusively a [Fe2(L3)3]4+ product species. 1H NMR spectroscopy showed that the complexes exist as both rac-(helical) and meso-(non-helical) isomers in DMSO-d6 solution at 298 K. L1-L3 were designed such that following complexation, six amide hydrogen atoms would line an inter-strand intrahelical cavity of sufficient size to facilitate the binding of guest species within it. Indeed, ESMS studies showed characteristic peaks typical of complex-anion species in solution. Furthermore, 1H NMR titration experiments showed that anions bind within the intrahelical cavity as titration of 1, 5 and 7 with Bu4NCl showed significant downfield shifts in the amide and bipyridyl H6 proton resonances to yield a species of 1 : 2 host to guest stoichiometry. Moreover, addition of Bu4NCl to 1, 5 and 7 shifted the rac-/meso-species distribution from 1 : 2 in favour of the meso- to 100% in favour of the rac-isomer, showing that Cl- ions favour the formation of the triple helicate species in DMSO-d6 solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号