首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we report the synthesis and a study on the degree of electronic delocalization in the asymmetric mixed valence complexes [CpFe(C(8)H(6))Fe(C(8)H(7))](+), 3a(+), and [CpCo(C(8)H(6))Fe(C(8)H(7))](+), 3b(+), (Cp = C(5)Me(5), C(8)H(6) = pentalenyde, C(8)H(7) = hydropentalenyde, and = ((3,5(CF(3))(2)C(6)H(3))(4)B(-))). Electrochemical methods, (57)Fe M?ssbauer spectroscopy, electronic spectroscopy, and electron paramagnetic resonance were used for this purpose. Although the anti conformation of the complexes precludes any metal-metal interaction, all the techniques employed show that 3a(+) is a electronic delocalized system, while 3b(+) behaves as two individual metallic centers with localized electron density.  相似文献   

2.
A series of novel half-sandwich M(I) and M(III) complexes (M = Co, Rh) bearing the N-heterocyclic carbene ligand 1,3-dimesitylimidazol-2-ylidene (IMes) have been prepared and characterized. Thus, (eta5-C(5)R(5))M(IMes)(C(2)H(4))(M = Co, Rh; R = H, Me) were obtained from the corresponding bis(ethene) complexes (eta5-C(5)R(5))M(C(2)H(4))(2), except for CpRh(IMes)(C(2)H(4)) which was prepared via the novel 16-electron Rh(I) compound Rh(IMes)(C(2)H(4))(2)Cl. The carbonyl compounds (eta5-C(5)R(5))Co(IMes)(CO)(R = H, Me) were synthesized by thermal CO substitution of (eta5-C(5)R(5))Co(CO)(2). A diamagnetic, apparently 16-electron Co(III) compound [CpCo(IMes)I](+)[I(3)(-)] was obtained from CpCo(IMes)(CO) and I(2). Finally, Co(III) and Rh(III) complexes CpCo(IMes)Me(2) and Cp*Rh(IMes)Me(2) were prepared by methylation of [CpCo(IMes)I](+)[I(3)(-)], and ligand exchange at Cp*Rh(Me(2)SO)Me(2), respectively. The molecular structures of CpCo(IMes)(CO), CpRh(IMes)(C(2)H(4)), Cp*Rh(IMes)(C(2)H(4)), and Cp*Rh(IMes)Me(2) were determined by single crystal X-ray diffraction. Steric and electronic factors imposed by the strongly donating and sterically demanding IMes ligand are discussed on the basis of X-ray crystallographic, NMR, and IR spectroscopic analyses. Very poor correlations are found between values for (1)J(Rh-C(carbene)) and dRh-C(carbene) data for Rh(i) N,N-heterocyclic carbene complexes including literature data and this work.  相似文献   

3.
The extent of metal-metal electronic coupling was quantified for a series of syn and anti stereoisomers of (FeCp)(2)-, (RhL(2))(2)- and (FeCp)(RhL(2))- (L(2)=1,5-cyclooctadiene (cod), L=CO) as-indacenediide mixed-valent ions by spectroelectrochemical and DFT studies. The effect of the syn/anti orientation of the metal units with respect to the planar aromatic ligand indicates that electron transfer occurs through the bridge rather than through space. The nature of the metal was found to be crucial: while homobimetallic diiron species are localised valence-trapped ions (Class II), the dirhodium analogues are almost delocalised mixed-valent ions (borderline and Class III). Finally, despite their redox asymmetry, even in the heterobimetallic iron-rhodium as-indacenediide complexes, strong metal-metal coupling is present. In fact, oxidation of the iron centre is accompanied by electron transfer from rhodium to iron and formation of a reactive 17-electron rhodium site. syn and anti Fe-Rh as-indacenediide complexes are rare examples of heterobimetallic systems which can be classified as borderline Class II/Class III species.  相似文献   

4.
The prototype hetero-binuclear complexes containing metal-metal bonds, {CpRh[E2C2(B10H10)]}[Fe(CO)3] (Cp = Cp* = eta 5-Me5C5, E = S(5a), Se(5b); Cp = Cp = eta 5-1,3-tBu2C5H3, E = S(6a), Se(6b)) and {CpCo[E2C2(B10H10)]}[Fe(CO)3] (Cp = Cp* = eta 5-Me5C5, E = S(7a), Se(7b); Cp = Cp = eta 5-C5H5, E = S(8a), Se(8b)) were obtained from the reactions of 16-electron complexes CpRh[E2C2(B10H10)] (Cp = Cp*, E = S(1a), Se(1b); Cp = Cp, E = S(2a), Se(2b)), CpCo[E2C2(B10H10)] (Cp = Cp*, E = S(3a), Se(3b); Cp = Cp, E = S(4a), Se(4b)) with Fe(CO)5 in the presence of Me3NO. The molecular structures of {Cp*Rh[E2C2(B10H10)]}[Fe(CO)3] (E = S(5a), Se(5b)), {CpRh[S2C2(B10H10)]}[Fe(CO)3] (6a) {Cp*Co[S2C2(B10H10)]}[Fe(CO)3] (7a) and {CpCo[S2C2(B10H10)]}[Fe(CO)3] (8a) have been determined by X-ray crystallography. All these complexes were characterized by elemental analysis and IR and NMR spectra.  相似文献   

5.
A series of hetero- and homo-dinuclear complexes with direct metal-metal interaction are synthesized through reaction of Cp*Rh[E(2)C(2)(B(10)H(10))] (E = S (1a), Se (1b)) and CpRh[S(2)C(2)(B(10)H(10))] (2a) with low valent half-sandwich CpCo(CO)(2) or CpRh(C(2)H(4))(2) under moderate conditions. The resulting products, namely (Cp*Rh)(CpCo)[E(2)C(2)(B(10)H(10))] (E = S(3a); Se(3b)), (Cp*Rh)(CpRh)[E(2)C(2)(B(10)H(10))] (E = S(4a); Se(4b)) and (CpRh)(CpRh)[S(2)C(2)(B(10)H(10))] (5a), are fully characterized by IR and NMR spectroscopy and elemental analysis. The molecular structures of 3a, 3b, 4a, 4b and 5a are established by X-ray crystallography analyses, and the Rh-Co (2.4778(11) (3a) and 2.5092(16) (3b) A) and Rh-Rh bonds (2.5721(8) (4a), 2.6112(10) (4b), 2.5627(10) (5a) A) fall in the range of single bonds.  相似文献   

6.
Metalladichalcogenolate cluster complexes [{CpCo(S2C6H4)}2Mo(CO)2] (Cp = eta(5)-C5H5) (3), [{CpCo(S2C6H4)}2W(CO)2] (4), [CpCo(S2C6H4)Fe(CO)3] (5), [CpCo(S2C6H4)Ru(CO)2(P(t)Bu3)] (6), [{CpCo(Se2C6H4)}2Mo(CO)2] (7), and [{CpCo(Se2C6H4)}(Se2C6H4)W(CO)2] (8) were synthesized by the reaction of [CpCo(E2C6H4)] (E = S, Se) with [M(CO)3(py)3] (M = Mo, W), [Fe(CO)5], or [Ru(CO)3(P(t)Bu3)2], and their crystal structures and physical properties were investigated. In the series of trinuclear group 6 metal-Co complexes, 3, 4, and 7 have similar structures, but the W-Se complex, 8, eliminates one cobalt atom and one cyclopentadienyl group from the sulfur analogue, 4, and does not satisfy the 18-electron rule. 1H NMR observation suggested that the CoW dinuclear complex 8 was generated via a trinuclear Co2W complex, with a structure comparable to 7. The trinuclear cluster complexes, 3, 4, and 7, undergo quasi-reversible two-step one-electron reduction, indicating the formation of mixed-valence complexes Co(III)M(0)Co(II) (M = Mo, W). The thermodynamic stability of the mixed-valence state increases in the order 4 < 3 < 7. In the dinuclear group 8 metal-Co complexes, 5 and 6, the CpCo(S2C6H4) moiety and the metal carbonyl moiety act as a Lewis acid character and a base character, respectively, as determined by their spectrochemical and redox properties. Complex 5 undergoes reversible two-step one-electron reduction, and an electron paramagnetic resonance (EPR) study indicates the stepwise reduction process from Co(III)Fe(0) to form Co(III)Fe(-I) and Co(II)Fe(-I).  相似文献   

7.
The double-decker sandwich complex CpIr(2,3-Et(2)C(2)B(4)H(4)) (1a) was prepared via deprotonation of nido-2,3-Et(2)C(2)B(4)H(6) to its mono- or dianion and reaction with (CpIrCl(2))(2) in THF and isolated as a colorless air-stable solid; the B(4)-chloro derivative 1b was also obtained. Decapitation of 1a and 1b with TMEDA afforded colorless nido-CpIr(2,3-Et(2)C(2)B(3)H(5)) (2a) and its 4-chloro derivative 2b. Chlorination of 1a by Cl(2) or N-chlorosuccinimide gave the symmetrical species CpIr(2,3-Et(2)C(2)B(4)H(3)-5-Cl) (1c), which was decapped to yield nido-CpIr(2,3-Et(2)C(2)B(3)H(4)-5-Cl) (2c). The triple-decker complexes CpIr(2,3-Et(2)C(2)B(3)H(2)-4[6]-Cl)IrCp (3), an orange solid, and dark green CpIr(2,3-Et(2)C(2)B(3)H(2)-4[6]-Cl)CoCp (5) were prepared from 2a and nido-CpCo(2,3-Et(2)C(2)B(3)H(5)) (4a), respectively, by deprotonation and reaction with (CpIrCl(2))(2) in THF. Reaction of the 2c(-) anion with Rh(MeCN)(3)Cl(3) gave the dark green tetradecker complex [CpIr(Et(2)C(2)B(3)H(2)-5-Cl)](2)RhH (6). In an attempt to prepare a heterotrimetallic Co-Rh-Ir tetradecker sandwich, a three-way reaction involving the deprotonated anions derived from CpCo(2,3-Et(2)C(2)B(3)H(4)-5-Cl) (4b) and 2c with Rh(MeCN)(3)Cl(3) was conducted. The desired species CpCo(Et(2)C(2)B(3)H(2)Cl)RhH(Et(2)C(2)B(3)H(2)Cl)IrCp (7) and the tetradeckers [CpCo(Et(2)C(2)B(3)H(2)Cl)](2)RhH (8) and 6 were isolated in small quantities from the product mixture; many other apparent triple-decker and tetradecker products were detected via mass spectroscopy but were not characterized. All new compounds were isolated via column or plate chromatography and characterized via NMR, UV-visible, and mass spectroscopy and by X-ray crystal structure determinations of 1a and 3. Crystal data for 1a: space group C2/c; a = 28.890(5) ?, b = 8.511(2) ?, c = 15.698(4) ?, beta = 107.61(2) degrees; Z = 8; R = 0.049 for 1404 independent reflections having I > 3sigma(I). Crystal data for 3: space group P2(1)/c; a = 11.775(4) ?, b = 15.546(5) ?, c = 15.500(5) ?, beta = 103.16(3) degrees; Z = 4; R = 0.066 for 2635 independent reflections having I > 3sigma(I).  相似文献   

8.
The reaction of the 16e half-sandwich complex [CpCo(S2C2B10H10)] (1S; Cp: cyclopentadienyl) with ethynylferrocene in CH2Cl2 at ambient temperature leads to [CpCo(S2C2B10H9)-(CH2CFc)] (2S; Fc: ferrocenyl) and 1,2,4-triferrocenylbenzene. In 2S, B substitution occurs at the carborane cage in the position B3/B6 with the formation of a C-B bond. In the presence of the protic solvent MeOH, 2S loses a CpCo fragment to generate [(CH2CFc)(S2C2B10H9)] (3S). On the other hand, 2S can take a free CpCo fragment to form [(CpCo)2(S2C2B9H8)-(CHCFc)] (4S) containing a nido-C2B9 unit. In sharp contrast, [CpCo-(Se2C2B10H10)] (1Se) does not react with the alkyne in CH2Cl2, but in MeOH [(CHCFc)(Se2C2B10H10)] (5Se) is generated without the presence of a CpCo unit. The reaction of 1 with dimethyl acetylenedicarboxylate at ambient temperature leads to insertion compounds [CpCo(E2C2B10H10){(MeO2C)-C=C(CO2Me)}] (6S, E=S; 6 Se, E=Se). Upon heating, 6S rearranges to two geometrical isomers [CpCo(S2C2B10H9){(MeO2C)C=CH(CO2Me)}] (7S) and [CpCo(S2C2B10H9){(MeO2C)-CHC(CO2Me)}] (8S). In both, B-H functionalization takes place at the carborane cage in the position B3/B6, but 7S is a 16e complex with an olefinic unit in a Z configuration, and 8S is an 18e complex containing an alkyl B-CH group. Further treatment of 7 S with dimethyl acetylenedicarboxylate at ambient temperature affords two B-disubstituted complexes at the carborane cage in the positions of the B3 and B6 sites, that is, [CpCo(S2C2-B10H8){(MeO2C)C=CH(CO2Me)}2] (9S) and [CpCo(S2C2B10H8){(MeO2C)-CHC(CO2Me)}{(MeO2C)C=CH-(CO2Me)}] (10S). Compound 9S is a 16e complex with two olefinic units in E/E configurations, whereas 10S is an 18e species containing both an olefinic substituent and an alkyl B--CH unit. The reaction of 7S with methyl acetylenemonocarboxylate at ambient temperature leads to the sole 16e compound [CpCo(S2C2B10H8){CH=CH(CO2Me)}-{(MeO2C)C=CH(CO2Me)}] (11S). In contrast, 6Se does not rearrange. All new complexes 2S-4S, 5Se, 6Se, and 7S-11S were characterized by NMR spectroscopy (1H, 11B, 13C) and X-ray structural analyses were performed for 2S-4S, 5Se, 6Se, and 7S-9S.  相似文献   

9.
π-Conjugated trinuclear iridium and cobalt dithiolenes undergo multiple metal-metal bond formation with Co(2)(CO)(8) and Fe(CO)(5), giving rise to Ir(3)Co(6) nonanuclear and Co(3)Fe(3) hexanuclear cluster complexes 5 and 6, respectively. 5 retains a planar framework and intense π conjugation across the three iridadithiolenes and the phenylene bridge, which results in intense electronic communication among the three Co(2)(CO)(5) units in reduced mixed-valent states.  相似文献   

10.
The Class III (delocalized) intervalence radical anions of 1,4-dinitrobenzene, 2,6-dinitronaphthalene, 2,6-dinitroanthracene, 9,9-dimethyl-2,7-dinitrofluorene, 4,4'-dinitrobiphenyl, and 1,5-dinitronaphthalene show charge-transfer bands in their near-IR spectra. The dinitroaromatic radical anions have comparable but slightly larger electronic interactions (H(ab) values) through the same aromatic bridges as do the corresponding dianisylamino-substituted radical cations. H(ab) values range from 5410 cm(-)(1) (1,4- dinitrobenzene) to 3400 cm(-)(1) (9,9-dimethyl-2,7-dinitrofluorene), decreasing as the number of bonds between the nitro groups increases, except for the 1,5-dinitronaphthalene radical-anion, which has a coupling similar to that of 9,9-dimethyl-2,7-dinitrofluorene. All charge-transfer bands show vibrational fine structure. The vertical excitation energies (lambda(v)) were estimated from the vibrational components, obtained by simulation of the entire band. The large 2H(ab)/lambda(v) values confirm these radicals to be Class III delocalized mixed-valence species. Analysis using Cave and Newton's generalized Mulliken-Hush theory relating the transition dipole moment to the distance on the diabatic surfaces suggests that the electron-transfer distance on the diabatic surfaces, d(ab), is only 26-40% of the nitrogen-to-nitrogen distance, which implies that something may be wrong with our analysis.  相似文献   

11.
Gao LB  Kan J  Fan Y  Zhang LY  Liu SH  Chen ZN 《Inorganic chemistry》2007,46(14):5651-5664
Preparation and characterization of a series of rodlike binuclear ruthenium polyynediyl complexes capped with redox-active organometallic fragments [(bph)(PPh3)2Ru]+ (bph=N-(benzoyl)-N'-(picolinylidene)-hydrazine) or [(Phtpy)(PPh3)2Ru]2+ (Phtpy=4'-phenyl-2,2':6',2' '-terpyridine) have been carried out. The length of the molecular rods is extended by successive insertion of 2,5-thiophene or 1,4-phenylene spacers in the bridging ligands. Oxidation of thiophene-containing Ru2II,II complexes induces isolation of stable Ru2II,III or Ru2III,III species. Electrochemical and UV-vis-NIR spectral studies demonstrate that the polyynediyl bridges with 2,5-thiophene units are more favorable for metal-metal charge transfer compared with those containing the same number of 1,4-phenylene units. Successive increase of thiophene spacers in mixed-valence complexes {RuII}-CC(C4H2S)mCC-{RuIII} (m=1, 2, 3) induced a smooth transition from almost electronic delocalization (m=1) to localization (m=3). For binuclear ruthenium complexes with intramolecular electron transfer transmitted across nine Ru-C and C-C bonds, electronic conveying capability follows {Ru}-CC(CC)2CC-{Ru}>{Ru}-CC(C4H2S)CC-{Ru}>{Ru}-CC(C6H4)CC-{Ru}>{Ru}-CC(CH=CH)2CC-{Ru}. It is revealed that molecular wires capped with electron-rich (bph)(PPh3)2Ru endgroups are much more favorable for electronic communication than the corresponding electron-deficient (Phtpy)(PPh3)2Ru-containing counterparts. The intermetallic electronic communication is fine-tuned by modification of both the bridging spacers and the ancillary ligands.  相似文献   

12.
The heterotrinuclear complexes trans- and cis-[{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) are unprecedented examples of mixed valence complexes based on ferrocyanide bearing three different metal centers. These complexes have been assembled in a stepwise manner from their {trans-III-L(14S)Co(III)}, {cis-VI-L(15)Rh(III)}, and {Fe(II)(CN)(6)} building blocks. The preparative procedure follows that found for other known discrete assemblies of mixed valence dinuclear Cr(III)/Fe(II) and polynuclear Co(III)/Fe(II) complexes of the same family. A simple slow substitution process of [Fe(II)(CN)(6)](4-) on inert cis-VI-[Rh(III)L(15)(OH)](2+) leads to the preparation of the new dinuclear mixed valence complex [{cis-VI-L(15)Rh(III)(μ-NC)}Fe(II)(CN)(5)](-) with a redox reactivity that parallels that found for dinuclear complexes from the same family. The combination of this dinuclear precursor with mononuclear trans-III-[Co(III)L(14S)Cl](2+) enables a redox-assisted substitution on the transient {L(14S)Co(II)} unit to form [{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+). The structure of the final cis-[{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) complex has been established via X-ray diffraction and fully agrees with its solution spectroscopy and electrochemistry data. The new species [{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) and [{cis-VI-L(15)Rh(III)(μ-NC)}Fe(II)(CN)(5)](-) show the expected electronic spectra and electrochemical features typical of Class II mixed valence complexes. Interestingly, in the trinuclear complex, these features appear to be a simple addition of those for the Rh(III)/Fe(II) and Co(III)/Fe(II) moieties, despite the vast differences existent in the electronic spectra and electrochemical properties of the two isolated units.  相似文献   

13.
The synthesis of novel Co(I) polymers featuring CpCo(C(4)R(4)) units are reported. The cyclopentadienyl ring on the CpCo(C(4)R(4)) unit has been functionalized with acrylate or methacrylate groups. Acrylate derivatives of these compounds were found to polymerize giving rise to the first example of polymers containing neutral, 18 e cobaltoarenocenes in the side chain.  相似文献   

14.
Reduction of 1,2-closo-C2B10H12 followed by treatment with [RuCl2(p-cymene)]2(p-cymene = C6H4MeiPr-1,4) affords the 13-vertex ruthenacarborane 4-(p-cymene)-4,1,6-closo-RuC2B10H12, characterised both spectroscopically and, in two crystalline forms, crystallographically. Although asymmetric in the solid state, having a docosahedral cage architecture with cage C atoms at vertices 1 and 6, this species clearly has Cs symmetry on the NMR timescale at room temperature. However, the fluctional process in operation can be arrested at low temperature, and an activation energy of 43.1 kJ mol(-1) is estimated. A computational study of the related species 4-(eta-C6H6)-4,1,6-closo-RuC2B10H12 reveals that the fluctionality is due to a double diamond-square-diamond process, first suggested by Hawthorne et al for the analogous CpCo species. These calculations yield an activation energy of 40.4 kJ mol(-1), in excellent agreement with that derived from experiment. Reduction of 1,2-Ph(2)-1,2-closo-C2B10H10 followed by treatment with [RuCl2(eta-C6H6)]2 or [RuCl2(p-cymene)]2 yields the analogous species 1,6-Ph2-4-(eta-C6H6)-4,1,6-closo-RuC2B10H10 and 1,6-Ph2-4-(p-cymene)-4,1,6-closo-RuC2B10H10, respectively. These C,C-diphenyl compounds were again studied spectroscopically and crystallographically, the p-cymene species again showing two crystalline modifications. In contrast to their CpCo and Cp*Co analogues all three ruthenacarboranes do not undergo isomerisation in refluxing toluene.  相似文献   

15.
Li B  Corbett JD 《Inorganic chemistry》2006,45(22):8958-8964
The ternary compounds K(34)In(91.05(9))Mg(13.95(9)) (I), K(34)In(96.19(6))Au(8.81(6)) (II), and K(34)In(89.95(1))Zn(13.05(7)) (III) have been synthesized by high-temperature means and structurally characterized by single-crystal X-ray diffraction methods. All are analogues of earlier products in which Li is substituted for some In in a hypothetical K(34)In(105) lattice. They consist of complex three-dimensional anionic networks built of In(12) icosahedra and M(28) triply fused icosahedra (M = In or In/T and T = Mg, Au, or Zn). The K atoms bridge between cluster faces or edges and form K(136) clathrate-IotaIota type networks. Two neighboring M(28) units are interconnected by an M atom to form a sandwich complex (M(28))M(M(28)) in I and II or by a Zn-Zn dimer in (M(28))ZnZn(M(28)) in III. Mixed In/T sites only occur in the M(28) portions. Phase stabilization through electronic tuning is present in all three via substitution of the electron-poorer T elements for In. Extended Hückel analyses indicate that all metal-metal bonding within the M(28) cluster appears to be optimized in I and III even though both are metallic. The size of the substituted element is also important in the structural features, as is especially shown by the Zn compound.  相似文献   

16.
First principles density functional pseudopotential calculations have been used to investigate the nature of interactions between single-walled carbon nanotubes (SWNTs) and intercalated transition metal metallocene complexes, M(eta-C(5)H(5))(2) (MCp(2)). Three composites, MCp(2)-graphene (d(t)=infinity), MCp(2)@(17,0) (d(t)=1.33 nm), and MCp(2)@(12,0) (d(t)=0.94 nm) (where M=Fe,Co), have been studied to probe the influence of the nanotube diameter (d(t)) on the nature and magnitude of the interactions. Theoretical results presented here demonstrate that these MCp(2)@SWNT composites are stabilized by weak pi-stacking and CH...pi interactions, and in the case of the CoCp(2)@SWNT composites there is an additional electrostatic contribution as a result of charge transfer from CoCp(2) to the nanotube. The extent of charge transfer (MCp(2)-->SWNT) can be rationalized in terms of the electronic structures of the two fragments, or more specifically, the relative positions of the metallocene highest occupied molecular orbital and the conduction band of the nanotube in the electronic structure of the composite.  相似文献   

17.
The first examples of mono and bisfluorophosphazene derived [eta (5)-cyclopentadienyl] [eta (4)-1,3-cyclohexadiene] cobalt complexes have been prepared along with the sandwich compound [eta (5)-carbomethoxycyclopentadienyl] [eta (4)-1,3-bis(pentafluorocyclotriphosphazenyl)-2,4-diphenylcyclobutadiene] cobalt and acetylene trimerized products from the reactions of [eta (5)-MeOC(O)C 5H 4]Co[COD], PhCCP 3N 3F 5 and phenylacetylene in the presence or absence of an additional cycloalkene or indene. Formation of these mono and bis fluorophosphazene derived cobalt cyclohexadiene complexes provide experimental evidence for a metallacyclopentadiene pathway for cyclohexadiene formation in CpCo catalyzed reactions. Selectivity is also observed in the formation of bisfluorophosphazene derived cyclohexadienes which stems from the fact that two P 3N 3F 5 units cannot be accommodated on vicinal carbon atoms of a carbacycle or metallacycle. Interestingly, reactions of (beta-phenylethynyl)pentafluorobenzene with [eta (5)-MeOC(O)C 5H 4]Co[COD] in the presence and absence of external cycloalkene under identical reaction conditions yielded only the cis and trans isomers of the metallocene [eta (5)-MeOC(O)C 5H 4]Co[eta (4)-C 4Ph 2(C 6F 5) 2] along with alkyne trimerized product indicating that the selectivity in cyclohexadiene formation is governed more by steric than electronic factors. All the new compounds were characterized by (1)H, (13)C, (31)P, and (19)F NMR as well as mass spectrometry and elemental analysis. Mono and bispentafluorocyclotriphosphazene derived [eta (5)-cyclopentadienyl] [eta (4)-1,3-cyclohexadiene] cobalt complexes and [eta (5)-carbomethoxycyclopentadienyl] [eta (4)-bis(1,3-pentafluorophenyl)-2,4-diphenylcyclobutadiene] cobalt have also been structurally characterized by single crystal X-ray analysis.  相似文献   

18.
Three series of cobalt(III) corroles were tested as catalysts for the electroreduction of dioxygen to water. One was a simple monocorrole represented as (Me(4)Ph(5)Cor)Co, one a face-to-face biscorrole linked by an anthracene (A), biphenylene (B), 9,9-dimethylxanthene (X), dibenzofuran (O) or dibenzothiophene (S) bridge, (BCY)Co(2) (with Y = A, B, X, O or S), and one a face-to-face bismacrocyclic complex, (PCY)Co(2), containing a Co(II) porphyrin and a Co(III) corrole also linked by one of the above rigid spacers (Y = A, B, X, or O). Cyclic voltammetry and rotating ring-disk electrode voltammetry were both used to examine the catalytic activity of the cobalt complexes in acid media. The mixed valent Co(II)/Co(III) complexes, (PCY)Co(2), and the biscorrole complexes, (BCY)Co(2), which contain two Co(III) ions in their air-stable forms, all provide a direct four-electron pathway for the reduction of O(2) to H(2)O in aqueous acidic electrolyte when adsorbed on a graphite electrode, with the most efficient process being observed in the case of the complexes having an anthracene spacer. A relatively small amount of hydrogen peroxide was detected at the ring electrode in the vicinity of E(1/2) which was located at 0.47 V vs SCE for (PCA)Co(2) and 0.39 V vs SCE for (BCA)Co(2). The cobalt(III) monocorrole (Me(4)Ph(5)Cor)Co also catalyzes the electroreduction of dioxygen at E(1/2) = 0.38 V with the final products being an approximate 50% mixture of H(2)O(2) and H(2)O.  相似文献   

19.
A hydrogen-mediated Ru-C to Ru-B bond conversion was observed experimentally and supported by the theoretical calculations. Treatment of [eta(5):sigma(C)-Me(2)C(C(5)H(4))(C(2)B(10)H(10))]Ru(COD) (1) bearing a Ru-C(cage) sigma bond with PR(3) in the presence of H(2) gave Ru-B(cage) bonded complexes [eta(5):sigma(B)-Me(2)C(C(5)H(4))(C(2)B(10)H(10))]RuH(2)(PR(3)) (R = Cy (2), Ph (3)) (sigma(C): Ru-C(cage) sigma bond; sigma(B): Ru-B(cage) sigma bond). Complex 3 was converted to [eta(5):sigma(B)-Me(2)C(C(5)H(4))(C(2)B(10)H(10))]Ru(L(2)) in the presence of L(2) (L(2) = dppe (4), PPh(3)/P(OEt)(3) (5), PPh(3)/pyridine (6)) via liberation of H(2) upon heating. These complexes were fully characterized by various spectroscopic techniques, elemental analyses, and single-crystal X-ray diffraction studies. DFT calculations show that this conversion process is both kinetically and thermodynamically favorable and requires involvement of a hydride ligand.  相似文献   

20.
The new compounds CpV(B(3)H(8))(2), CpCr(B(3)H(8))(2), and Cp(2)Co(2)(B(6)H(14)) have been synthesized by treating the pentamethylcyclopentadienyl complexes [CpVCl(2)](3), [CpCrCl(2)](2), and [CpCoCl](2) with NaB(3)H(8). X-ray crystallography shows that CpV(B(3)H(8))(2) and CpCr(B(3)H(8))(2) have the same ligand sets but different molecular structures: the vanadium compound contains two bidentate B(3)H(8) ligands (i.e., bound to the metal center via two vicinal hydrogen atoms), whereas the chromium compound has one bidentate B(3)H(8) ligand and one B(3)H(8) ligand bound in an unprecedented fashion via two geminal hydrogen atoms. The "gem-bound" B(3)H(8) group itself has an atypical structure consisting of a BH(2)-BH(2)-BH(3) triangle with one additional hydrogen atom bridging the unique BH(2)-BH(2) edge. The B-B distances are nearly identical within experimental error at 1.790(5), 1.792(5), and 1.786(6) Angstrom. The relationship between the electronic and molecular structures of the V and Cr compounds is briefly discussed. The structure of Cp(2)Co(2)(B(6)H(14)) can be viewed in two different ways: as a dicobalt complex in which two CpCo units are each bound to four adjacent boron atoms of an S-shaped B(6)H(14) ligand, or as an eight-vertex hypho cluster compound. In the former case, the B(6)H(14) ligand is best regarded as a dianionic bi-borallyl group H(3)B(mu-H)BH(mu-H)BHBH(mu-H)BH(mu-H)BH(3) in which one hydrogen at each end of the chain is involved in an agostic interaction. From a cluster point of view, the structure of Cp(2)Co(2)(B(6)H(14)) can be generated by removing three adjacent high-connectivity vertices from the eleven-vertex closo polyhedron. The Co-B distances vary from 2.008(5) to 2.183(4) Angstrom, and the B-B distances within in the S-shaped chain range from 1.734(8) to 1.889(6) Angstrom. Finally, a new synthesis of the known molybdenum compound Cp(2)Mo(2)(B(5)H(9)) is described; its structure as established by X-ray crystallography closely resembles that of the previously described (C(5)H(4)Me) analogue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号