首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The electron transport characteristics of a 1,10-dimethylene-1,10-dicarba-closo-decaborane (10-vertex carborane) single molecular conductor is investigated via the density functional-based non-equilibrium Green's function (DFT-NEGF) method. We consider three configurations for the molecular wire sandwiched between two Au(1 0 0) electrodes: the hollow site, top site and bridge site positions. Our results show that the energetically favorable hollow site configuration has a higher current intensity than the other configurations.The projection of the density of states (PDOS) and the transmission coefficients T(E) of the two-probe system at zero bias are analyzed, and it suggests that the variation of the coupling between the molecule and the electrodes with external bias leads to the higher conductance for the hollow configuration.Furthermore, the transmission coefficients of the hollow system at various external voltage biases are also investigated and it shows that the broadening of the transmission coefficient spectrum with increasing of the external voltage bias indicates a strong coupling between the molecular orbitals in the carborane and the incident states from the electrodes, and thus the current increases with increases of the bias voltage.  相似文献   

2.
《Current Applied Physics》2015,15(8):877-884
In order to pioneer the electron transport properties of silicon (Si) quantum dot-molecule hybrid polymers, we investigate the electron transport properties of the benzene molecule in silicon (Si) semiconductor electrodes, based on nonequilibrium Green's function (NEGF) method coupled with density functional theory (DFT), in comparison with conventional gold (Au) metal electrodes, with three different anchoring linker groups: thiol for dithiol-benzene (DTB), methylene for dimethyl-benzene (DMB), and direct bonding for benzene (Ph). It is interestingly found that, due to band gap nature of the Si semiconductor electrodes, the molecular junctions with the Si electrodes show no current up to the bias voltage of around 0.8 V. In addition, the DTB molecular junctions in the Si semiconductor electrodes connected with Si–S bond show higher conducting properties than other DMB and Ph molecular junctions directly coupled to the electrodes with the Si–C bonds (DMB < Ph < DTB). The electron transport properties of the molecules in the two different electrodes are analyzed on the basis of the understanding transmission spectra, projected density of states (PDOS), and molecular orbitals. We believe that the use of thiol linker may open new possibility in the molecular electronics with the Si semiconductor electrodes and the Si QD-molecule hybrid polymers concept.  相似文献   

3.
We investigate quantum mechanical electron transport along the long axis of the DNA molecule using an effective tight-binding model. The overall contour plot of transmission, the current-voltage characteristics, and the differential conductance are examined for the variation of backbone onsite energy, the energy-dependent hopping strength, and the contact coupling between the leads and the DNA molecule. It is shown that as backbone asymmetry increases, the merging and collapse of the two mini-bands take place and an extra resonance peak in the transmission appears. In addition, we present the modulation of voltage threshold in the current-voltage curves and a double-peak structure in the differential conductance due to the disappearance of the merged mini-band. Finally, in the Coulomb blockade regime of asymmetric contact coupling, a distinct and under-unity resonance in the transmission appears due to the interference effects between the DNA molecular bands and the electronic structure of the leads at the DNA-lead interface.  相似文献   

4.
5.
The effect of molecular orientation on the electron transport behavior of single porphyrin sandwiched between two gold (111) electrodes is investigated by density functional theory calculations combined with non-equilibrium Green’s function method. The results show that the porphyrin with parallel connection to gold (111) electrodes is more conductive than the porphyrin with diagonal connection to gold (111) electrodes. The mechanism of the difference of electron transport for these two molecular junctions is analyzed from the transmission spectra and the molecular projected self-consistent Hamiltonian states. It is found that the intrinsic nature of the molecule, such as the π-conjugated framework and the strength of molecule–electrode coupling, are the essential reason for generating this difference of electron transport for the two molecular systems.  相似文献   

6.
We investigate the time-dependent transport properties of the quantum well (QW) with a wide band-gap material layer, where Al atoms doped in the middle GaAs QW. We find that the raised potential well bottom can affect the position of current hysteresis, current oscillation frequency and final steady-state mean current value. Moreover in this special structure, we find a negative differential conductance and only a current hysteresis region, the plateau structure of IV curve found in the AlGaAs/GaAs/AlGaAs QW disappears.  相似文献   

7.
Electron transport properties of an ideal one-dimensional (1D) quantum wire are studied including spatially periodic Rashba spin–orbit coupling (SOC) and Dresselhaus SOC. By comparing with the previous work [S.J. Gong, Z.Q. Yang, J. Phys. Condens. Matter 19 (2007) 446209], two transmission gaps appear in the transmission probability of electrons and their widths are also broadened dramatically. Moreover, it is found that their widths are sensitive not only to the strength of SOCs but also to the length ratio of SOCs segment and non-SOCs segment. In addition, a ‘circle-type’ transmission behavior has been found by tuning the strength of SOCs continuously. Our results may extend the previous work and provide an more effective method to manipulate the current in nanoelectric devices.  相似文献   

8.
We investigate the effect of dopant (boron ‘B’–nitrogen ‘N’) position and density on electronic transport properties of a BN co-doped silicon carbide nanotube (SiCNT). The results show an increase in conductance when both BN impurities are far in space from each other. Orbital delocalization and appearance of new electronic states around Fermi level contribute to the current when this spacing is increased. On the other hand, a reduction in SiCNT conductivity was observed when BN dopant density was increased. This is attributed to the electronic states moving away from the Fermi level and orbital localization at higher bias voltages.  相似文献   

9.
The quantum transport properties of a non-interacting mesoscopic ring sandwiched between two metallic electrodes are investigated by the use of Green's function technique. Here, we introduce parametric approach, based on the tight-binding model to study these transport properties. The electronic transport properties are focused in three aspects: (a) geometry of the mesoscopic ring, (b) coupling strength of the ring with the two electrodes and (c) magnetic flux threaded by the ring.  相似文献   

10.
The rates of electron scattering via phonons in the armchair single-wall carbon nanotubes were calculated by using the improved scattering theory within the tight-binding approximation. Therefore, the problem connected with the discrepancy of the scattering rates calculated in the framework of the classical scattering theory and ones predicted by experimental data was clarified. Then these results were used for the solving of the kinetic Boltzmann equation to describe electron transport properties of the nanotubes. The equation was solved numerically by using both the finite difference approach and the Monte Carlo simulation procedure.  相似文献   

11.
Using non-equilibrium Green׳s function and ab initio calculations we investigate structural, electronic, and transport properties of a junction consisting of armchair hexagonal boron phosphide nanoribbon (ABPNR) contacted by two semi-infinite electrodes composed of armchair graphene nanoribbons (AGNRs). We consider three different configurations including the pristine AGNR–BP–GNR and substitutions for Iron atoms, namely on phosphorus and boron atoms at one edge of the BP nanoribbon. The spin current polarization in all these cases is extracted for each structure and bias. Such hybrid system is found to exhibit not only significant spin-filter efficiency (SFE) but also tunable negative differential resistance (NDR).  相似文献   

12.
We investigate the electronic transport properties of silicon carbide nanotubes (SiCNT) in presence of both boron (B) and nitrogen (N) impurities. The results show that co-doping BN impurities suppresses the important negative differential resistance (NDR) property. NDR suppression is attributed to the introduction of new electronic states near the Fermi level followed by weak orbital localization. BN co-doping results in exponential current-voltage (I-V) characteristics which is in contrast to linear I-V characteristics for individual boron and nitrogen doped SiCNTs. HOMO has no contribution from B impurity, whereas, LUMO has contribution from N impurity at low and high bias.  相似文献   

13.
14.
The electron transport properties of cis-polyacetylene and cis-polyacetylene based molecular wires (oligo(cyclopentadiene), oligo(pyrrole), and oligo(furan)) have been studied theoretically using a combination of density-functional theory and non-equilibrium Green′s functions method. The results demonstrate that the introduction of bridging group X (X=CH2, NH, and O) in cis-polyacetylene has a profound effect on the electron transport behavior of the molecules. The conductance of the four molecular wires decreases in the order of polyacetylene>oligo(cyclopentadiene)>oligo(furan)>oligo(pyrrole). In particular, the conductances of oligo(furan) and oligo(pyrrole) are much lower than those of polyacetylene and oligo(cyclopentadiene). The mechanism of this difference of electron transport properties of these four molecular systems is analyzed in terms of their geometric structures, electronic structures, transmission spectra, and spatial distribution of frontier orbitals. It is found that the energy levels of frontier molecular orbitals and the evolution of spatial distribution of frontier molecular orbitals with the applied bias are the essential reason for generating this difference of electron transport behaviors of the four molecular systems.  相似文献   

15.
The nonequilibrium Green’s function approach in combination with density-functional theory is used to perform ab initio quantum-mechanical calculations of the electron transport properties of polyacetylene, polythiophene, poly(phenylene vinylene), poly(p-phenylene ethynylene), and poly(p-phenylene) molecules sandwiched between two gold electrodes. The results demonstrate that the conjugation path has a profound effect on the electron transport property of the molecular wires. Among the five molecular wires, polyacetylene is the most conductive one. The conductivities of the five molecular wires decrease with an order of polyacetylene > polythiophene > poly(phenylene vinylene) > poly(p-phenylene ethynylene) > poly(p-phenylene). The conductivities of polyacetylene and polythiophene are much higher than those of poly(phenylene vinylene), poly(p-phenylene ethynylene), and poly(p-phenylene). The difference of electron transport behaviors of these molecular wires are analyzed in terms of the electronic structures, the transmission spectra, and the spatial distributions of molecular orbitals.  相似文献   

16.
We report transport measurements through a single-molecule magnet, the Mn12 derivative [Mn12O12(O2C-C6H4-SAc)16(H2O)4], in a single-molecule transistor geometry. Thiol groups connect the molecule to gold electrodes that are fabricated by electromigration. Striking observations are regions of complete current suppression and excitations of negative differential conductance on the energy scale of the anisotropy barrier of the molecule. Transport calculations, taking into account the high-spin ground state and magnetic excitations of the molecule, reveal a blocking mechanism of the current involving nondegenerate spin multiplets.  相似文献   

17.
The linear conductance of a molecular conductor oscillating between two metallic leads is investigated numerically both for Hubbard interacting and noninteracting electrons. The molecule-leads tunneling barriers depend on the molecule displacement from its equilibrium position. The results present an interesting interference which leads to a conductance dip at the electron-hole symmetry point that could be experimentally observable. It is shown that this dip is caused by the destructive interference between the purely electronic and phonon-assisted tunneling channels, which are found to carry opposite phases. When an internal vibrational mode is also active, the electron-hole symmetry is broken but a Fano-like interference is still observed.  相似文献   

18.
《Physics letters. A》2020,384(10):126215
Inspired by recent experiments on the successful synthesis of hydrofullerene C66H4 in Tian et al. (2019) [12] with two negatively curved heptagons. Based on the density functional theory and nonequilibrium Green's function method, we report the spin-dependent transport through transition-metal-atom-encapsulated C66H4 hydrofullerene, i.e., X@C66H4(X=Fe, Co, Mn, Ni), contacted by single gold atoms via semi-infinite non-magnetic Au electrodes. It is found that, Mn- and Fe-doped systems show highly spin-polarized transmission as well as considerable magnetic moments whereas Ni-doped systems show completely spin-unpolarized transmission and nonmagnetic. Interestingly, Co-doped systems show two spin states, i.e., spin-polarized and spin-unpolarized ones. Further analysis shows that, for Mn-, Fe- and Ni-doped systems, the spin-polarized/unpolarized state is caused by the finite/(nearly-)zero magnetism of the encapsulated metal atom. While the magnetism in Co-doped systems is quenched for the top hexagonal doping case, but not for the side heptagonal doping one, which induces the spin-unpolarized/spin-polarized state. And the screening effect of electrodes on the magnetism of Co is the underlying physical mechanism. Our findings would be beneficial to the design of spintronics devices.  相似文献   

19.
B R Nag 《Pramana》1986,27(1-2):47-61
Experimental results on low-field and high-field electron transport in rectangular quantum wells are reviewed. The related theory is presented and the experimental results are examined in the light of the theory. It is concluded that although some experimental results are available and the theory of transport has been developed, numerical agreement between theory and experiments has not yet been reached. The author felicitates Prof. D S Kothari on his eightieth birthday and dedicates this paper to him on this occasion.  相似文献   

20.
Minseok Song 《Molecular physics》2014,112(20):2658-2664
We perform molecular dynamics simulations to study the transport of geometrically modified water models through channels of carbon nanotube (CNT) membranes. We use two modifications to an existing water model (extended simple point charge SPC/E) as representative surrogates of molecular fluids: (1) bent model (model B) in which the HOH angle is varied while keeping the dipole moment constant by adjusting the OH bond length and (2) modified bent model (model MB) in which the HOH angle changes without any change in OH bond length thereby changing the dipole moment. Interestingly, we find that the fluid transport is a nonmonotonic function of the bond angle for both fluid models. This observed trend is not anticipated based on the fluid density as a function of the bond angle inside and outside of the nanotube channel. However, the average residence time of transmitted molecules through the channel provides an approximately inverse linear correlation with the observed flux, independent of the fluid model. Based on these correlations, we have developed an empirical design parameter connecting fluid transport through CNTs as a function of average occupancy (number of fluid molecules inside the nanotube) and the average residence time. Our results suggest that transport through carbon nanotubes can be sensitive to small changes in the structure of fluid molecules that can potentially be utilised for mixture separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号