首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Implicit solvent models are powerful tools in accounting for the aqueous environment at a fraction of the computational expense of explicit solvent representations. Here, we compare the ability of common implicit solvent models (TC, OBC, OBC2, GBMV, GBMV2, GBSW, GBSW/MS, GBSW/MS2 and FACTS) to reproduce experimental absolute hydration free energies for a series of 499 small neutral molecules that are modeled using AMBER/GAFF parameters and AM1-BCC charges. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, most implicit solvent models demonstrate reasonable agreement with extensive explicit solvent simulations (average difference 1.0-1.7 kcal/mol and R(2)=0.81-0.91) and with experimental hydration free energies (average unsigned errors=1.1-1.4 kcal/mol and R(2)=0.66-0.81). Chemical classes of compounds are identified that need further optimization of their ligand force field parameters and others that require improvement in the physical parameters of the implicit solvent models themselves. More sophisticated nonpolar models are also likely necessary to more effectively represent the underlying physics of solvation and take the quality of hydration free energies estimated from implicit solvent models to the next level.  相似文献   

2.
This paper reports the results of our attempt to predict hydration free energies on the SAMPL2 blind challenge dataset. We mostly examine the effects of the solute electrostatic component on the accuracy of the predictions. The usefulness of electronic polarization in predicting hydration free energies is assessed by comparing the Electronic Polarization from Internal Continuum model and the self consistent reaction field IEF-PCM to standard non-polarizable charge models such as RESP and AM1-BCC. We also determine an optimal restraint weight for Dielectric-RESP atomic charges fitting. Statistical analysis of the results could not distinguish the methods from one another. The smallest average unsigned error obtained is 1.9 ± 0.6 kcal/mol (95% confidence level). A class of outliers led us to investigate the importance of the solute–solvent instantaneous induction energy, a missing term in PB continuum models. We estimated values between −1.5 and −6 kcal/mol for a series of halo-benzenes which can explain why some predicted hydration energies of non-polar molecules significantly disagreed with experiment.  相似文献   

3.
Continuum dielectric methods such as the Born equation have been widely used to compute the electrostatic component of the solvation free energy, DeltaG(solv)(elec), because they do not need to include solvent molecules explicitly and are thus far less costly compared to molecular simulations. All of these methods can be derived from Gauss Law of Maxwell's equations, which yields an analytical solution for the solvation free energy, DeltaG(Born), when the solute is spherical. However, in Maxwell's equations, the solvent is assumed to be a structureless continuum, whereas in reality, the near-solute solvent molecules are highly structured unlike far-solute bulk solvent. Since we have recently reformulated Gauss Law of Maxwell's equations to incorporate the near-solute solvent structure by considering excluded solvent volume effects, we have used it in this work to derive an analytical solution for the hydration free energy of an ion. In contrast to continuum solvent models, which assume that the normalized induced solvent electric dipole density P(n) is constant, P(n) mimics that observed from simulations. The analytical formula for the ionic hydration free energy shows that the Born radius, which has been used as an adjustable parameter to fit experimental hydration free energies, is no longer ill defined but is related to the radius and polarizability of the water molecule, the hydration number, and the first peak position of the solute-solvent radial distribution function. The resulting DeltaG(solv)(elec) values are shown to be close to the respective experimental numbers.  相似文献   

4.
Continuum solvation methods are frequently used to increase the efficiency of computational methods to estimate free energies. In this paper, we have evaluated how well such methods estimate the nonpolar solvation free-energy change when a ligand binds to a protein. Three different continuum methods at various levels of approximation were considered, viz., the polarized continuum model (PCM), a method based on cavity and dispersion terms (CD), and a method based on a linear relation to the solvent-accessible surface area (SASA). Formally rigorous double-decoupling thermodynamic integration was used as a benchmark for the continuum methods. We have studied four protein-ligand complexes with binding sites of varying solvent exposure, namely the binding of phenol to ferritin, a biotin analogue to avidin, 2-aminobenzimidazole to trypsin, and a substituted galactoside to galectin-3. For ferritin and avidin, which have relatively hidden binding sites, rather accurate nonpolar solvation free energies could be obtained with the continuum methods if the binding site is prohibited to be filled by continuum water in the unbound state, even though the simulations and experiments show that the ligand replaces several water molecules upon binding. For the more solvent exposed binding sites of trypsin and galectin-3, no accurate continuum estimates could be obtained, even if the binding site was allowed or prohibited to be filled by continuum water. This shows that continuum methods fail to give accurate free energies on a wide range of systems with varying solvent exposure because they lack a microscopic picture of binding-site hydration as well as information about the entropy of water molecules that are in the binding site before the ligand binds. Consequently, binding affinity estimates based upon continuum solvation methods will give absolute binding energies that may differ by up to 200 kJ/mol depending on the method used. Moreover, even relative energies between ligands with the same scaffold may differ by up to 75 kJ/mol. We have tried to improve the continuum solvation methods by adding information about the solvent exposure of the binding site or the hydration of the binding site, and the results are promising at least for this small set of complexes.  相似文献   

5.
Four commonly used molecular mechanics force fields, CHARMM22, OPLS, CVFF, and GROMOS87, are compared for their ability to reproduce experimental free energies of hydration (ΔGhydr) from molecular dynamics (MD) simulations for a set of small nonpolar and polar organic molecules: propane, cyclopropane, dimethylether, and acetone. ΔGhydr values were calculated by multiconfiguration thermodynamic integration for each of the different force fields with three different sets of partial atomic charges: full charges from an electrostatic potential fit (ESP), and ESP charges scaled by 0.8 and 0.6. All force fields, except for GROMOS87, give reasonable results for ΔGhydr · if partial atomic charges of appropriate magnitude are assigned. For GROMOS87, the agreement with experiment for hydrocarbons (propane and ethane) was improved considerably by modifying the repulsive part of the carbon-water oxygen Lennard-Jones potential. The small molecules studied are related to the chemical moieties constituting camphor (C10Hl6O). By invoking force-field transferability, we calculated the ΔGhydr for camphor. With the modified GROMOS force field, a ΔGhydr within 4 kJ/mol of the experimental value of −14.8 kJ/mol was obtained. Camphor is one of the largest molecules for which an absolute hydration free energy has been calculated by molecular simulation. The accuracy and reliability of the thermodynamic integration calculations were analyzed in detail and we found that, for ΔGhydr calculations for the set of small molecules in aqueous solution, molecular dynamics simulations of 0.8–1.0 ns in length give an upper statistical error bound of 1.5 kJ/mol, whereas shorter simulations of 0.25 nm in length given an upper statistical error bound of 3.5 kJ/mol. © 1997 by John Wiley & Sons, Inc.  相似文献   

6.
The correct representation of solute-water interactions is essential for the accurate simulation of most biological phenomena. Several highly accurate quantum methods are available to deal with solvation by using both implicit and explicit solvents. So far, however, most evaluations of those methods were based on a single conformation, which neglects solute entropy. Here, we present the first test of a novel approach to determine hydration free energies that uses molecular mechanics (MM) to sample phase space and quantum mechanics (QM) to evaluate the potential energies. Free energies are determined by using re-weighting with the Non-Boltzmann Bennett (NBB) method. In this context, the method is referred to as QM-NBB. Based on snapshots from MM sampling and accounting for their correct Boltzmann weight, it is possible to obtain hydration free energies that incorporate the effect of solute entropy. We evaluate the performance of several QM implicit solvent models, as well as explicit solvent QM/MM for the blind subset of the SAMPL4 hydration free energy challenge. While classical free energy simulations with molecular dynamics give root mean square deviations (RMSD) of 2.8 and 2.3 kcal/mol, the hybrid approach yields an improved RMSD of 1.6 kcal/mol. By selecting an appropriate functional and basis set, the RMSD can be reduced to 1 kcal/mol for calculations based on a single conformation. Results for a selected set of challenging molecules imply that this RMSD can be further reduced by using NBB to reweight MM trajectories with the SMD implicit solvent model.  相似文献   

7.
Implicit solvent models for biomolecular simulations have been developed to use in place of more expensive explicit models; however, these models make many assumptions and approximations that are likely to affect accuracy. Here, the changes in free energies of solvation upon folding of several fast folding proteins are calculated from previously run μs–ms simulations with a number of implicit solvent models and compared to the values needed to be consistent with the explicit solvent model used in the simulations. In the majority of cases, there is a significant and substantial difference between the values calculated from the two approaches that is robust to the details of the calculations. These differences could only be remedied by selecting values for the model parameters—the internal dielectric constant for the polar term and the surface tension coefficient for the nonpolar term—that were system‐specific or physically unrealistic. We discuss the potential implications of our findings for both implicit and explicit solvent simulations. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
9.
In this contribution, we focused on the use of polarizable force fields to model the structural, energetic, and thermodynamical properties of lanthanides and actinides in water. In a first part, we chose the particular case of the Th(IV) cation to demonstrate the capabilities of the AMOEBA polarizable force field to reproduce both reference ab initio gas-phase energetics and experimental data including coordination numbers and radial distribution functions. Using such model, we predicted the first polarizable force field estimate of Th(IV) solvation free energy, which accounts for −1,638 kcal/mol. In addition, we proposed in a second part of this work a full extension of the SIBFA (Sum of Interaction Between Fragments Ab initio computed) polarizable potential to lanthanides (La(III) and Lu(III)) and to actinides (Th(IV)) in water. We demonstrate its capabilities to reproduce all ab initio contributions as extracted from energy decomposition analysis computations, including many-body charge transfer and discussed its applicability to extended molecular dynamics and its parametrization on high-level post-Hartree–Fock data.  相似文献   

10.
Molecular pincers or tweezers are designed to hold and release the target molecule. Potential applications involve drug distribution in medicine, environment technologies, or microindustrial techniques. Typically, the binding is dominated by van der Waals forces. Modeling of such complexes can significantly enhance their design; yet obtaining accurate complexation energies by theory is difficult. In this study, density functional theory (DFT) computations combined with dielectric continuum solvent model are compared with the potential of mean force approach using umbrella sampling and the weighted histogram analysis method (WHAM) with molecular dynamics (MD) simulations. For DFT, functional and basis set effects are discussed. The computed results are compared to experimental data based on NMR spectroscopic measurements of five synthesized tweezers based on the Tröger's basis. Whereas the DFT computations correctly provided the observed trends in complex stability, they failed to produce realistic magnitudes of complexation energies. Typically, the binding was overestimated by DFT if compared to experiment. The simpler semiempirical PM6‐DH2X scheme proposed lately yielded better magnitudes of the binding energies than DFT but not the right order. The MD‐WHAM simulations provided the most realistic Gibbs binding energies, although the approximate MD force fields were not able to reproduce completely the ordering of relative stabilities of model complexes found by NMR. Yet the modeling provides interesting insight into the complex geometry and flexibility and appears as a useful tool in the tweezers' design. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Hydration free energy calculations have become important tests of force fields. Alchemical free energy calculations based on molecular dynamics simulations provide a rigorous way to calculate these free energies for a particular force field, given sufficient sampling. Here, we report results of alchemical hydration free energy calculations for the set of small molecules comprising the 2011 Statistical Assessment of Modeling of Proteins and Ligands challenge. Our calculations are largely based on the Generalized Amber Force Field with several different charge models, and we achieved RMS errors in the 1.4-2.2 kcal/mol range depending on charge model, marginally higher than what we typically observed in previous studies (Mobley et al. in J Phys Chem B 111(9):2242-2254, 2007, J Chem Theory Comput 5(2):350-358, 2009, J Phys Chem B 115:1329-1332, 2011; Nicholls et al. in J Med Chem 51:769-779, 2008; Klimovich and Mobley in J Comput Aided Mol Design 24(4):307-316, 2010). The test set consists of ethane, biphenyl, and a dibenzyl dioxin, as well as a series of chlorinated derivatives of each. We found that, for this set, using high-quality partial charges from MP2/cc-PVTZ SCRF RESP fits provided marginally improved agreement with experiment over using AM1-BCC partial charges as we have more typically done, in keeping with our recent findings (Mobley et al. in J Phys Chem B 115:1329-1332, 2011). Switching to OPLS Lennard-Jones parameters with AM1-BCC charges also improves agreement with experiment. We also find a number of chemical trends within each molecular series which we can explain, but there are also some surprises, including some that are captured by the calculations and some that are not.  相似文献   

12.
Solvent effects play a crucial role in mediating the interactions between proteins and their ligands. Implicit solvent models offer some advantages for modeling these interactions, but they have not been parameterized on such complex problems, and therefore, it is not clear how reliable they are. We have studied the binding of an octapeptide ligand to the murine MHC class I protein using both explicit solvent and implicit solvent models. The solvation free energy calculations are more than 103 faster using the Surface Generalized Born implicit solvent model compared to FEP simulations with explicit solvent. For some of the electrostatic calculations needed to estimate the binding free energy, there is near quantitative agreement between the explicit and implicit solvent model results; overall, the qualitative trends in the binding predicted by the explicit solvent FEP simulations are reproduced by the implicit solvent model. With an appropriate choice of reference system based on the binding of the discharged ligand, electrostatic interactions are found to enhance the binding affinity because the favorable Coulomb interaction energy between the ligand and protein more than compensates for the unfavorable free energy cost of partially desolvating the ligand upon binding. Some of the effects of protein flexibility and thermal motions on charging the peptide in the solvated complex are also considered. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 591–607, 2001  相似文献   

13.
Hydration free energy calculations are often used to validate molecular simulation methodologies and molecular mechanics force fields. We use the free-energy perturbation method together with the AMOEBA polarizable force field and the Poltype parametrization protocol to predict the hydration free energies of 52 molecules as part of the SAMPL4 blind challenge. For comparison, similar calculations are performed using the non-polarizable General Amber force field. Against our expectations, the latter force field gives the better results compared to experiment. One possible explanation is the sensitivity of the AMOEBA results to the conformation used for parametrization.  相似文献   

14.
The sensitivity of aqueous solvation free energies (SFEs), estimated using the GB/SA continuum solvent model, on charge sets, protocols, and force fields, was studied. Simple energy calculations using the GB/SA solvent model were performed on 11 monofunctional organic compounds. Results indicate that calculated SFEs are strongly dependent on the charge sets. Charges derived from electrostatic potential fitting to high level ab initio wave functions using the CHELPG procedure and “class IV” charges from AM1/CM1a or PM3/CM1p calculations yielded better results than the corresponding Mulliken charges. Calculated SFEs were similar to MC/FEP energies obtained in the presence of explicit TIP4P water. Further improvements were obtained by using GVB/6-31G** and MP2/6-31+G** (CHELPG) charge sets that included correlation effects. SFEs calculated using charge sets assigned by the OPLSA* force field gave the best results of all standard force fields (MM2*, MM3*, MMFF, AMBER*, and OPLSA*) implemented in MacroModel. Comparison of relative and absolute SFEs computed using either the GB/SA continuum model or MC/FEP calculations in the presence of explicit TIP4P water showed that, in general, relative SFEs can be estimated with greater accuracy. A second set of 20 mono- and difunctional molecules was also studied and relative SFEs estimated using energy minimization and thermodynamic cycle perturbation (TCP) protocols. SFEs calculated from TCP calculations using the GB/SA model were sensitive to bond lengths of dummy bonds (i.e., bonds involving dummy atoms). In such cases, keeping the bond lengths of dummy bonds close to the corresponding bond lengths of the starting structures improved the agreement of TCP-calculated SFEs with energy minimization results. Overall, these results indicate that GB/SA solvation free energy estimates from simple energy minimization calculations are of similar accuracy and value to those obtained using more elaborate TCP protocols. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 769–780, 1998  相似文献   

15.
We performed replica-exchange molecular dynamics (REMD) simulations of six ligands to examine the dependency of their free energy landscapes on charge parameters and solvent models. Six different charge parameter sets for each ligand were first generated by RESP and AM1-BCC methods using three different conformations independently. RESP charges showed some conformational dependency. On the other hand, AM1-BCC charges did not show conformational dependency and well reproduced the overall trend of RESP charges. The free energy landscapes obtained from the REMD simulations of ligands in vacuum, Generalized-Born (GB), and TIP3P solutions were then analyzed. We found that even small charge differences can produce qualitatively different landscapes in vacuum condition, but the differences tend to be much smaller under GB and TIP3P conditions. The simulations in the GB model well reproduced the landscapes in the TIP3P model using only a fraction of the computational cost. The protein-bound ligand conformations were rarely the global minimum states, but similar conformations were found to exist in aqueous solution without proteins in regions close to the global minimum, local minimum or intermediate states.  相似文献   

16.
Solvation Gibbs energies of N-methyl-p-nitroaniline (MNA) in water and 1-octanol are calculated using the expanded ensemble molecular dynamics method with a force field taken from the literature. The accuracy of the free energy calculations is verified with the experimental Gibbs free energy data and found to reproduce the experimental 1-octanol∕water partition coefficient to within ±0.1 in log unit. To investigate the hydration structure around N-methyl-p-nitroaniline, an independent NVT molecular dynamics simulation was performed at ambient conditions. The local organization of water molecules around the solute MNA molecule was investigated using the radial distribution function (RDF), the coordination number, and the extent of hydrogen bonding. The spatial distribution functions (SDFs) show that the water molecules are distributed above and below the nitrogen atoms parallel to the plane of aromatic ring for both the methylamino and nitro functional groups. It is found that these groups have a significant effect on the hydration of MNA with water molecules forming two weak hydrogen bonds with both the methylamino and nitro groups. The hydration structures around the functional groups in MNA in water are different from those that have been found for methylamine, nitrobenzene, and benzene in aqueous solutions, and these differences together with weak hydrogen bonds explain the lower solubility of MNA in water. The RDFs together with SDFs provide a tool for the understanding the hydration of MNA (and other molecules) and therefore their solubility.  相似文献   

17.
Nucleic acid force fields have been shown to reproduce structural properties of DNA and RNA very well, but comparative studies with respect to thermodynamic properties are rare. As a test for thermodynamic properties, we have computed hydration free energies and chloroform‐to‐water partition coefficients of nucleobases using the AMBER‐99, AMBER‐gaff, CHARMM‐27, GROMOS‐45a4/53a6 and OPLS‐AA force fields. A mutual force field comparison showed a very large spread in the calculated thermodynamic properties, demonstrating that some of the parameter sets require further optimization. The choice of solvent model used in the simulation does not have a significant effect on the results. Comparing the hydration free energies obtained by the various force fields to the adenine and thymine experimental values showed a very large deviation for the GROMOS and AMBER parameter sets. Validation against experimental partition coefficients showed good agreement for the CHARMM‐27 parameter set. In view of mutation studies, differences in partition coefficient between two bases were also compared, and good agreement between experiments and calculations was found for the AMBER‐99 parameter set. Overall, the CHARMM‐27 parameter set performs best with respect to the thermodynamic properties tested here. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The hydration free energies of amino acid side chains are an important determinant of processes that involve partitioning between different environments, including protein folding, protein complex formation, and protein-membrane interactions. Several recent papers have shown that calculated hydration free energies for polar and aromatic residues (Trp, His, Tyr, Asn, Gln, Asp, Glu) in several common molecular dynamics force fields differ significantly from experimentally measured values. We have attempted to improve the hydration energies for these residues by modifying the partial charges of the OPLS-AA force field based on natural population analysis of density functional theory calculations. The resulting differences between calculated hydration free energies and experimental results for the seven side chain analogs are less than 0.1 kcal/mol. Simulations of the synthetic Trp-rich peptide Trpzip2 show that the new charges lead to significantly improved geometries for interacting Trp-side chains. We also investigated an off-plane charge model for aromatic rings that more closely mimics their electronic configuration. This model results in an improved free energy of hydration for Trp and a somewhat altered benzene-sodium potential of mean force with a more favorable energy for direct benzene-sodium contact.  相似文献   

19.
Implicit solvent hydration free energy models are an important component of most modern computational methods aimed at protein structure prediction, binding affinity prediction, and modeling of conformational equilibria. The nonpolar component of the hydration free energy, consisting of a repulsive cavity term and an attractive van der Waals solute-solvent interaction term, is often modeled using estimators based on the solvent exposed solute surface area. In this paper, we analyze the accuracy of linear surface area models for predicting the van der Waals solute-solvent interaction energies of native and non-native protein conformations, peptides and small molecules, and the desolvation penalty of protein-protein and protein-ligand binding complexes. The target values are obtained from explicit solvent simulations and from a continuum solvent van der Waals interaction energy model. The results indicate that the standard surface area model, while useful on a coarse-grained scale, may not be accurate or transferable enough for high resolution modeling studies of protein folding and binding. The continuum model constructed in the course of this study provides one path for the development of a computationally efficient implicit solvent nonpolar hydration free energy estimator suitable for high-resolution structural and thermodynamic modeling of biological macromolecules.  相似文献   

20.
The effects of the use of three generalized Born (GB) implicit solvent models on the thermodynamics of a simple polyalanine peptide are studied via comparing several hundred nanoseconds of well-converged replica exchange molecular dynamics (REMD) simulations using explicit TIP3P solvent to REMD simulations with the GB solvent models. It is found that when compared to REMD simulations using TIP3P the GB REMD simulations contain significant differences in secondary structure populations, most notably an overabundance of alpha-helical secondary structure. This discrepancy is explored via comparison of the differences in the electrostatic component of the free energy of solvation (DeltaDeltaG(pol)) between TIP3P (via thermodynamic Integration calculations), the GB models, and an implicit solvent model based on the Poisson equation (PE). The electrostatic components of the solvation free energies are calculated using each solvent model for four representative conformations of Ala10. Since the PE model is found to have the best performance with respect to reproducing TIP3P DeltaDeltaG(pol) values, effective Born radii from the GB models are compared to effective Born radii calculated with PE (so-called perfect radii), and significant and numerous deviations in GB radii from perfect radii are found in all GB models. The effect of these deviations on the solvation free energy is discussed, and it is shown that even when perfect radii are used the agreement of GB with TIP3P DeltaDeltaG(pol) values does not improve. This suggests a limit to the optimization of the effective Born radius calculation and that future efforts to improve the accuracy of GB models must extend beyond such optimizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号