首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionic coupling of [Os4H2(CO)12]2− with [Ru(η6-C6H6)(MeCN)3]2+ affords the neutral mixed metal cluster Os4Ru(μH)2(CO)12(η6-C6H6) 1. The reaction of 1 with trimethylphosphite leads to the initial formation of the addition product Os4Ru(μH)2(CO)12(η6-C6H6)P(OMe)3 2, but this complex rearranges in solution to give Os4Ru(μ-H)3(CO)12(μ3-η6-C6H5)P(OMe)3 3. An X-ray structure of 3 shows that the metal core of the cluster is a ruthenium-spiked Os4 tetrahedron, with one hydrogen atom from the arene having transferred to the Os4 core, and one arene carbon bridging an Os-Os edge, while the ring as a whole remains η6-bound to the Ru atom.  相似文献   

2.
The X-ray diffraction study of crystals isolated from solutions obtained by reaction of Ba(OMe)2 with Ti(OMe)4 (molar ratio 1:2) in methyl alcohol was carried out; the crystals of the methanol solvate of the double barium-titanium methoxide, [Ba2Ti4O(OMe)18(MeOH)7]·MeOH (1), contain two Ba2+ cations with different environments and two kinds of anionic binuclear titanium complexes with and without oxo-ligand, and thus can be formulated as [Ba(MeOH)2]2+[Ba(MeOH)5]2+[Ti2O(OMe)8]2−[Ti2(OMe)10]2−·MeOH.  相似文献   

3.
The energy-localized CNDO/2 molecular orbitais have been calculated for the clusters containing molybdenum, > {Mo3S42Mo}8+ and> Mo3S4]CuI> 4+, versus the prototype arene-metal sandwich (C6H6)2Cr and half-sandwich complexes C6H6Cr(CO)3. The bonding characteristics of these compounds are described from a localization bonding viewpoint. There are two typical M-arene and M-[Mo3S4] bondings. One is formed by electron donation from the three-center two-electron π-bonds in the arene or [Mo3S4]4+ ligands into the vacant hybrid orbitais of the “stranger” metal atom. In the other M-arene or M-[Mo3S4] bond there is very little donation by the lone electron pair occupying the d AOs of the “stranger” metal atom to the arene or [Mo3S4]4+ ligands. The analogy of the ligand [Mo3S4]4+ in the clusters studied with the ligand benzene is also briefly discussed.  相似文献   

4.
An unexpected trimanganese(I) tetrathiolate-bridged complex, [Mn3(CO)9(μ-SC6H5)4], with an incomplete cubane structure, was obtained by thermal reaction of [Mn2(CO)10] with [Mo(η5-C5H5)2(SC6H5)2]. The structure, established by single-crystal X-ray diffraction studies, shows the cation, [Mo(η5-C5H5)2(H)CO]+, directed towards the vacant site of the cubane structure. Possible routes by which the anion and the cation could be formed are discussed.  相似文献   

5.
The bimetallic [Pt(NH3)4]2[W(CN)8][NO3]·2H2O is characterised by single-crystal X-ray diffraction [S.G.P21/m(11), a=8.0418(7), b=19.122(2), c=9.0812(6) Å, Z=2]. All platinum centres have the square-plane D4h geometry with average dimensions Pt(1)–N 2.042(2) and Pt(2)–N 2.037(10) Å. The octacyanotungstate anion has the square-antiprismatic D4d configuration with average dimensions W(1)–C 2.164(13), C–N 1.140(12), W(1)–N 3.303(5) Å. The structure exhibits two different mutual orientations of Pt versus W units resulting in Pt(2)–W(1), W(1)* separations of 4.77(2), 4.55(2)* and Pt(1)–W(1) of 6.331(8) Å. A centrosymmetric structure reveals groups of two distinct columns: the first is formed by intercalated NO3 between parallel [Pt(1)(NH3)4]2+ planes and the second consists of [W(CN)8]3− interlayered by, parallel to square faces of W-antiprisms, [Pt(2)(NH3)4]2+. The structure is stabilised through a three-dimensional hydrogen bond network via nitrogen atoms of cyanide ligands, hydrogen atoms of NH3 ligands, water molecules and oxygen atoms of NO3 counteranions. The vibrational pattern and the range of ν(CN) frequencies attributable to the electronic environment of W(V) and W(IV) are consistent with the ground state Pt(II)↔W(V) charge transfer.  相似文献   

6.
The cluster [Os3(CO)10(MeCN)2] reacts with 2,2′-dipyridyl disulphide (1, pySSpy) to give a range of oxidative addition products which were separated by TLC on silica and crystallization : [Os3(pyS)2(CO)10] (2), [Os3(pyS)2(CO)9] (3), [Os2(pyS)2(CO)6] (4) and [Os(pyS)2(CO)2] (5), together with some of the hydride [Os3H(pyS)(CO)9] (6), which is not an expected oxidative addition product. The X-ray crystal structures of compounds 2, 3, 4 and 6 (compounds 2 and 6 occurring within a single crystal), together with the known structure of compound 5, reveal several modes of pyS bonding : chelating pyS, μ2-pyS (both sulphur-bonded and nitrogen, sulphur-bonded) and μ3-pyS.  相似文献   

7.
The oxidation of Cp2NbCl2 with pure WF6 in SO2 solution yielded the cationic metallocene species [Cp2NbCl2]+[WF6] essentially in quantitative yield. The same reaction carried out in the presence of either equimolar amounts or a two-fold excess of HCN led to the preparation of the new niobocenium salt [Cp2NbCl2]4+[WF6]2− which was studied by single crystal X-ray diffraction. This compound represents the first example of a structurally characterized metallocene-WF6 complex, and crystallizes in the tetragonal system: space group, P41212(No. 92), a = 11.083(8) Å, c = 48.285 (9) Å; Z = 8; R = 0.0759, RW = 0.0841. ab]Die Oxidation von Cp2NbCl2 mit reinem WF6 führt in SO2-Lösung zur Synthese von [Cp2NbCl2 ]+[WF6] in nahezu quantitativer Ausbeute. Die analoge Reaktion führt unter Anwesenheit der äquimolaren Menge oder eines zweifachen Überschusses an HCN zur Ausbildung des Niobocenium-Komplexsalzes [Cp2NbCl2]4+ [WF6]2[WCl6]2−, von dem eine Röntgenstrukturanalyse angefertigt wurde. Diese Verbindung repräsentiert den ersten structurell charakterisierten Vertreter eines Metallocen-WF6-Komplexes und kristallisiert im tetragonalen System: Raumgruppe P41212 (Nr. 92), a = 11.083(8) Å, c = 48.285(9) Å; Z = 8; R = 0.0759, RW = 0.0841. kw]Niobium; X-ray diffraction; Oxidation; Metallocenes  相似文献   

8.
Reaction of L {L = [24]aneS8, [28]aneS8} with two molar equivalents of [Cu(NCMe)4]X (X = ClO4, BF4, PF6) in MeCN affords the white binuclear copper(I) complexes [Cu2(L)]2+. A single crystal X-ray structure determination of [CU2([24]aneS8)](BF4)2 shows two tetrahedral copper(I) centres, each of which is coordinated to four thioether sulphur-donors, Cu---S(1) = 2.263(3), Cu---S(4) = 2.363(3), Cu---S(7) = 2.349(3), Cu---S(10) = 2.261(3) Å. The Cu … Cu distance is 5.172(3) Å. A single crystal X-ray structure determination Of [CU2([28]aneS8)](ClO4)2 shows that this complex also contain two tetrahedral copper(I) centres, each coordinated to four thioether sulphur-donors, Cu---S(1) = 2.278(5), Cu---S(4) = 2.333(5), Cu---S(8) = 2.328(5), CU---S(11) = 2.268(5) Å. The Cu … Cu distance of 6.454(3) Å is greater than in [CU2([24]aneS8)]2+ , reflecting the greater cavity size in [CU2([28]aneS8)]2+. Cyclic voltammetry of [CU2([24]aneS8)]2+ and [CU2([28]aneS8)]2+ at platinum electrodes in MeCN (0.1 M nBU4NPF6) shows irreversible oxidations at Epa, = +0.88 V, +0.92 V vs Fc/Fc+, respectively, at a scan rate of 200 mV s−1. Coulometric measurements in MeCN confirm these oxidations to be two-electron (one electron per copper) processes to give binuclear copper(II) species. Oxidation of the binuclear copper(I) precursors with H2SO4 or HNO3 affords ESR-active copper(II) species which presumably incorporate SO42− and NO3 bridges.  相似文献   

9.
The reaction of K[ReH6(PPh3)2] with [RhCl(CO)L2] [L= PPh3, 1,2,5-triphenylphosphole (TPP), or P(OMe)3] leads to the new electronically unsaturated heterobimetallic polyhydride complexes [(CO)(PPh3)2HRe(μ-H)3RhL2] in moderate-to-good yields. The structures of these complexes have been established on the basis of spectroscopic data, especially 1H and 31P NMR. The bridging hydride ligands are fluxional but there is either a slow or nonexistent exchange between terminal and bridging hydrides. For L = PPh3 or TPP, protonation with tetrafluoroboric acid affords quantitatively the cationic complexes [(CO)(PPh3)2HRe(μ-H)3RhHL2]+, isolated as the BF4 or the BPh4 salts.  相似文献   

10.
The cluster [Os3(CO)10(MeCN)2] reacts with indazole (C7H6N2) to give two isomeric products [0s3(μ-H)(μ-C7H5N2)(CO)10] in which the five-membered ring has been metallated with N-H cleavage to give an N,N-bonded isomer or with C-H cleavage to give a C,N-bonded isomer. These two isomers have very similar X-ray structures but can be clearly distinguished by 1H NMR methods. They are shown to correspond to related clusters derived from pyrazole. Benzotriazole (C6H5N3) also reacts (as shown earlier by others) to give two isomers: an N,N-bonded species [Os3(μ-H)(μ-C6H4N3)(CO)10] coordinated only through the five-membered ring and a minor C,N-bonded isomer [Os3(μ-H)(μ-C6H4N3)(CO)10], metallated at the C6 ring and coordinated through both rings. The former isomer reacts with Me3NO in acetonitrile to give [Os3(μ-H)(μ-C6H4N3)(CO)9(MeCN)] which thermally looses MeCN to produce the coupled product [Os6(μ-H)2(μ3-C6H4N3)2(CO)18] which was shown by X-ray structure determination to have all six nitrogen atoms coordinated to osmium, a novel situation for coordinated benzotriazole. The two Os3 units are linked together by an OsNNOsNN ring in a boat conformation with the whole cluster adopting C2 symmetry.  相似文献   

11.
[W3Se7(S2P(OEt)2)3]Br was prepared by reacting (Et4N)2W3Se7Br6 with KS2P (OEt)2 in CH3CN and its crystal structure determined. In the [W33-Se)(μ2-Se2)3]4+ core the W---W bond length is 2.755(5)-2.764(6) Å and the Se---Se bond length is 2.32(1)- 2.34(4) Å.  相似文献   

12.
Reaction of [18]aneS6 with two molar equivalents of [Cu(NCMe)4](ClO4) in CH2Cl2-MeCN affords the binuclear copper(I) complex [Cu2([18]aneS6)(NCMe)2](ClO4)2. The single crystal X-ray structure of the complex shows a centrosymmetric cation with two tetrahedral copper(I) centres each coordinated to three thioether S-donors of [18]aneS6,Cu---S(1) = 2.3200(15), Cu---S(4) = 2.3415(16), Cu---S(7) = 2.3250(15) Å, and to one MeCN molecule, Cu---N(1) = 1.939(5) Å, to give an overall NS3-donation at the metal centres. Additionally, S(7′) shows a long-range interaction, Cu …S(7′) = 3.318(2) Å thus distorting the coordination geometry of the metal ion towards trigonal bipyramidal. The metal-metal separation of 4.428(2) Å suggests that there is no significant interaction between the copper centres of the dimer. Reaction of [9]aneS3 with one molar equivalent of [Cu(NCMe)4](ClO4) in refluxing MeCN in the presence of ligands, L, affords the adducts [Cu([9]aneS3)L]+ (L = PPh3, AsPh3). The single crystal X-ray structure of the complex [Cu([9]aneS3)(AsPh3)](ClO4) shows tetrahedral AsS3 coordination at copper(I) with [9]aneS3 bound facially to the metal centre, Cu---S = 2.303(6), Cu---As = 2.322(4) Å.  相似文献   

13.
The coordinatively unsaturated cluster [Pt33-CO)(μ-dppm)3]2+ (1, dppm = Ph2PCH2PPh2) reacts with Na+[M(CO)5] to give the mixed metal clusters [Pt3{M(CO)3}(μ-dppm)3]+ (M = Re, 2; Mn, 3). The new clusters are characterized by spectroscopic methods and, for M = Re, by an X-ray structure determination. The Pt3Re core in 2 is tetrahedral with particularly short metal-metal distances.  相似文献   

14.
The compound [Zn(H2O)4]2[H2As6V15O42(H2O)]·2H2O (1) has been synthesized and characterized by elemental analysis, IR, ESR, magnetic measurement, third-order nonlinear property study and single crystal X-ray diffraction analysis. The compound 1 crystallizes in trigonal space group R3, a=b=12.0601(17) Å, c=33.970(7) Å, γ=120°, V=4278.8(12) Å3, Z=3 and R1(wR2)=0.0512 (0.1171). The crystal structure is constructed from [H2As6V15O42(H2O)]4− anions and [Zn(H2O)4]2+ cations linked through hydrogen bonds into a network. The [H2As6V15O42(H2O)]6− cluster consists of 15 VO5 square pyramids linked by three As2O5 handle-like units.  相似文献   

15.
The transition 4A22E of Co2+ has been investigated in [N(CH3)4]2CoCl4 using optical absorption and magnetic circular dichroism. Three groups of lines with 274 cm−1 progressions were observed. The structure of the spectra indicates a J-T interaction in the 2E state with strong depression of the frequency of the J-T active mode. The ground-state splitting is 7.2 cm−1.  相似文献   

16.
The hydrothermal reactions of vanadium oxide starting materials with divalent transition metal cations in the presence of nitrogen donor chelating ligands yield the bimetallic cluster complexes with the formulae [{Cd(phen2)2V4O12]·5H2O (1) and [Ni(phen)3]2[V4O12]·17.5H2O (2). Crystal data: C48H52Cd2N8O22V4 (1), triclinic. a=10.3366(10), b=11.320(3), c=13.268(3) Å, =103.888(17)°, β=92.256(15)°, γ=107.444(14)°, Z=1; C72H131N12Ni2O29.5V4 (2), triclinic. a=12.305(3), b=13.172(6), c=15.133(4), =79.05(3)°, β=76.09(2)°, γ=74.66(3)°, Z=1. Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.59° <θ<26.02° and 2.01°<θ<25.01° using the ω-scan technique, respectively. The structure of 1 consists of a [V4O12]4− cluster covalently attached to two {Cd(phen)2}2+ fragments, in which the [V4O12]4− cluster adopts a chair-like configuration. In the structure of 2, the [V4O12]4− cluster is isolated. And the complex formed a layer structure via hydrogen bonds between the [V4O12]4− unit and crystallization water molecules.  相似文献   

17.
Reaction of potassium 3{5}-(3′,4′-dimethoxyphenyl)pyrazolide with 2-bromopyridine in diglyme at 130°C for 3 days followed by an aqueous quench, affords 1-{pyrid-2-yl}-3-{3′,4′-dimethoxyphenyl}pyrazole (L2) in 69% yield after recrystallization from hot hexanes. Complexation of [Cu(NCMe)4]BF4 by 2 molar equivalents of 1-{pyrid-2-yl}-3-{2′,5′-dimethoxyphenyl}pyrazole (L1) or L2 in MeCN at room temperature, followed by concentration and crystallisation with Et2O, gives [Cu(L)2]BF4 L = L1, L2) in good yields. Treatment of AgBF4 with L1 or L2 in MeNO2 similarly gives [Ag(L)2]BF4 L = L1, L2); reaction of AfBF4 with L2 in MeCN gives a product of stoichiometry [Ag(L2)(NCMe)]BF4. The 1H NMR spectra of the [M(L)2]BF4 complexes show peaks arising from a single coordinated environment. The single crystal X-ray structure of [Cu(L1)2]BF4 shows a tetrahedral complex cation with Cu---N = 2.011(8), 2.036(8), 2.039(8), 2.110(8) Å. The CuI centre is close to tetrahedral, the dihedral angle between the least-squares planes formed by the Cu atom and the N donor atoms of the two ligands being 88.3(3)°. Complexation of hydrated Cu(BF4)2 by L2 in MeCN at room temperature yields [Cu(L2)2](BF4)2. The cyclic voltammograms of the three AgI complexes in MeCN/0.1 M Bu4n NPF6 are suggestive of extensive ligand dissociation in this solvent.  相似文献   

18.
IR (4000-30 cm−1) and Raman (4000-0 cm) spectra of [(CD3)3S]I have been observed, together with those of [(CH3)3S]I. By assuming a C3v molecular symmetry for the cations [(CH3)3S]+ and [(CD3)3S]+, all the active fundamentals of [(CD3)3s]+ have been assigned and normal coordinate calculations have been carried out by a symmetry force field for [(CH3)3S]+ and [(CD3)3S]+. The strength of the S---C and C---H bonds in the compound has been compared with that in dimethyl sulfide by using their valence stretching force constants.  相似文献   

19.
The reactions of the diruthenium carbonyl complexes [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]X (X=BF4 (1a) or PF6 (1b)) with neutral or anionic bidentate ligands (L,L) afford a series of the diruthenium bridging carbonyl complexes [Ru2(μ-dppm)2(μ-CO)22-(L,L))2]Xn ((L,L)=acetate (O2CMe), 2,2′-bipyridine (bpy), acetylacetonate (acac), 8-quinolinolate (quin); n=0, 1, 2). Apparently with coordination of the bidentate ligands, the bound acetate ligand of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ either migrates within the same complex or into a different one, or is simply replaced. The reaction of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ (1) with 2,2′-bipyridine produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)2] (2), [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-bpy)]+ (3), and [Ru2(μ-dppm)2(μ-CO)22-bpy)2]2+ (4). Alternatively compound 2 can be prepared from the reaction of 1a with MeCO2H–Et3N, while compound 4 can be obtained from the reaction of 3 with bpy. The reaction of 1b with acetylacetone–Et3N produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-acac)] (5) and [Ru2(μ-dppm)2(μ-CO)22-acac)2] (6). Compound 2 can also react with acetylacetone–Et3N to produce 6. Surprisingly [Ru2(μ-dppm)2(μ-CO)22-quin)2] (7) was obtained stereospecifically as the only one product from the reaction of 1b with 8-quinolinol–Et3N. The structure of 7 has been established by X-ray crystallography and found to adopt a cis geometry. Further, the stereospecific reaction is probably caused by the second-sphere π–π face-to-face stacking interactions between the phenyl rings of dppm and the electron-deficient six-membered ring moiety of the bound quinolinate (i.e. the N-included six-membered ring) in 7. The presence of such interactions is indeed supported by an observed charge-transfer band in a UV–vis spectrum.  相似文献   

20.
The title complex [NH_3CH_2CH(NH_2)CH_3]_2 [M(Ⅵ)O_2(OC_6H_4O)_2](M= Mo_(0.6)W_(0.4))was synthesized via a simple solution-phase chemical route.The determination of single crystal X-ray diffraction revealed that the title compound is crystallized in a monoclinic system with P2(1)/n space group,a=1.0913(10)nm,b=1.0442(10)nm,c=1.8842(19)nm,α=90°,β=96.530(17)°,γ=90°,Z=4,and V=2.133(4)nm3.The mononuclear anionic unit [M(Ⅵ)O2(OC6H4O)2]2-displays chiral pseudo-octahedral [MO_6] coordination geometry and is linked by chiral cations via hydrogen bond and π…π stacking interaction.The transmission electron microscopy images show that the title complex is comprised of nano-particles with diameters ranging from 20 to 50 nm.The NMR study shows the 1H downfield chemical shifts of [NH_3CHaHbCH(NH_2)CH_3] cations in the title complex when it is mixed with adenosine-triphosphate(ATP),and the chemical shift difference between Ha and Hb is increased greatly,and most of the catecholate ligands dissociate from the central metal atoms.The DNA cleavage activity experiment reveals that DNA cleavage promoted by the title complex is lower than that by Na_2MoO_4 which possesses antitumor pro-perty,but higher than that by Na_2WO_4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号