首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The different intensities of reflecting and scattering ultrasound signal at the tissue interface of the body can help to deliver the inner information and have proven their tremendous usefulness in medicine. Because it has a lot of advantages such as safety, wide application, good repetition, effi-cient detection, flexibility and economy, ultrasound diagnostics becomes the primary technology of modern medical imaging diagnostics and plays a key role in the modern diagnostic technol-ogy[1]. Alt…  相似文献   

2.
Hollow polylactide microcapsules that can be used as ultrasound contrast agents were prepared using premix membrane emulsification. Polylactide/dichloromethane and dodecane solutions were emulsified together with a nonsolvent phase (water or a water–alcohol mixture) by repeated passage through a glass fibre membrane. The solvent, dichloromethane, diffuses out of the droplets and the polylactide solidifies around a droplet of dodecane. To investigate the effect of the nonsolvent properties on the size and span of the microcapsules, different methanol–water, ethanol–water and 2-propanol–water mixtures were used as nonsolvents.  相似文献   

3.
A binary poly(L ‐lactide)/poly(ε‐caprolactone) (PLLA/PCL) (70/30 w/w) blend and a ternary PLLA/PCL/PLLA‐PCL‐PLLA blend of the same composition which contains 4 wt.‐% of a triblock PLLA‐PCL‐PLLA copolyester as compatibilizing agent were prepared by melt mixing at 200°C. Investigation of the thermal and mechanical properties of the blends and scanning electron microscopy of their fracture surfaces showed in the case of the ternary blend a better state of dispersion of PCL in the PLLA matrix and an improved toughness.  相似文献   

4.
Nanocomposites of poly(l-lactic acid) (PLLA) containing 2.5 wt% of fumed silica nanoparticles (SiO2) and organically modified montmorillonite (OMMT) were prepared by solved evaporation method. From SEM micrographs it was observed that both nanoparticles were well dispersed into PLLA matrix. All nanocomposites exhibited higher mechanical properties compared to neat PLLA, except elongation at break, indicating that nanoparticles can act as efficient reinforcing agents. Nanoparticles affect, also, the thermal properties of PLLA and especially the crystallization rate, which in all nanocomposites is faster than that of neat PLLA. From the thermogravimetric curves it can be seen that neat PLLA nanocomposites present a relatively better thermostability than PLLA, and this was also verified from the calculation of activation energy (E). From the variation of E with increasing degree of conversion it was found that PLLA/nanocomposites decomposition takes place with a complex reaction mechanism, with the participation of two different mechanisms. The combination of models, nth order and nth order with autocatalysis (Fn–Cn), for PLLA and PLLA/OMMT as well as the combination of Fn–Fn for PLLA/SiO2 give the better results. For the PLLA/OMMT the values of the E for both mechanisms are higher than neat PLLA. For the PLLA/SiO2 nanocomposite the value of the E is higher than the corresponding value for PLLA, for the first area of mass loss, while the E of the second mechanism has a lower value.  相似文献   

5.
Porous poly(ε‐caprolactone) (PCL) films were prepared by the removal of poly(L ‐lactide) (PLLA) from phase‐separated PLLA/PCL blend films using the selective Proteinase K™‐catalyzed hydrolysis of PLLA and subsequent elution of its water‐soluble oligomers and monomer into the surrounding hydrolysis media. Polarimetry, gravimetry, and differential scanning calorimetry (DSC) confirmed the complete removal of PLLA molecules from the blend films within 5 d of the Proteinase K‐catalyzed hydrolysis and therefore the formation of porous PCL films when the initial PLLA content [XPLLA(0)(w/w) = PLLA/(PCL + PLLA)] of the blend films was in the range 0.3–0.5. The fragmentation of the blend film with XPLLA(0) = 0.7 occurred when the Proteinase K‐catalyzed hydrolysis was continued for longer than 5 d. These findings exhibited that both the PLLA‐rich and PCL‐rich phases were continuous in the blend films for XPLLA(0) ranges of 0.3–0.7 and of 0.3–0.5, respectively, and that the PCL‐rich phase became dispersed when XPLLA(0) was increased to 0.7. The dependence of enzymatic hydrolysis rate on XPLLA(0) strongly suggests that the Proteinase K‐catalyzed hydrolysis of the blend films occurs at the interfaces of PLLA‐rich and PCL‐rich phases as well as at the film surfaces.  相似文献   

6.
Phase change material microcapsules were prepared by complex coacervation of silk fibroin (SF) and chitosan (CHI). n-Eicosane was used as the core material. The effects of SF/CHI ratio, and percentage of cross-linking agent and n-Eicosane content on the properties of microcapsules were studied. The size distribution and the surface morphology of microcapsules were characterized by optical and scanning electron microscopy. The encapsulation of core material was determined by energy dispersive spectrometer analysis. The results indicated that SF/CHI microcapsules were prepared successfully. Microcapsules had smooth outer surface when the ratio of SF to CHI was close to 5. On the other hand, at high SF/CHI ratios (≥14), microcapsules showed a two-layer structure, an inner compact layer, and an outer, more porous, sponge-like layer. The highest microencapsulation efficiency was obtained at a SF/CHI ratio of 20 in the presence of 0.9% cross-linking agent and of 1.5% n-Eicosane content.  相似文献   

7.
双重乳液/溶剂蒸发法制备超声造影微泡   总被引:1,自引:0,他引:1  
通过水包油包水(W1/O/W2)双重乳液的油相溶剂蒸发过程, 制备了聚左旋乳酸(PLLA)微泡, 结合扫描电子显微镜(SEM)、激光共聚焦显微镜(LCSM)和粒度分析(PSA)等表征手段, 研究了外水相乳化剂的种类、浓度、两次乳化的水油比、均质机转速等参数对微泡性能的影响. 研究结果表明, 聚乙烯醇(PVA)是该体系外水相有效的乳化剂; 通过调节PVA水溶液的浓度或第二次乳化时均质机转速, 能有效地控制微泡的平均粒径(1~10 μm); 第一次乳化的水油比是微泡空心率的重要影响因素. 对微泡负压充气后, 进行体外超声显影检测, 证明该微泡具有较好的超声造影增强效果.  相似文献   

8.
The combination of several active substances into one carrier is often limited due to solubility, stability and phase-separation issues. These issues have been addressed by an innovative capsule design, in which nanocapsules are assembled on the microcapsule surface by electrostatic forces to form a pH-responsive hierarchical capsule@capsule system. Here, melamine-formaldehyde (MF) microcapsules with a negative surface charge were synthesized and coated with a novel MF-polyethyleneimine (PEI) copolymer to achieve a positive charge of ζ=+28 mV. This novel coating procedure allows the electrostatic assembly of negatively charged poly-l -lactide (PLLA, ζ=−19 mV) and poly-(lactide-co-glycolide) (PLGA, ζ=−56 mV) nanocapsules on the microcapsule surface. Assembly studies at pH 7 gave a partial surface coverage of PLLA nanocapsules and full surface coverage for PLGA nanocapsules. The pH-responsive adsorption and desorption of nanocapsules was shown at pH 7 and pH 3.  相似文献   

9.
To obtain an effective compatibilizer for the blends of poly(L‐lactide) (PLLA) and poly(ε‐caprolactone) (PCL), the diblock copolymers PCL‐b‐PLLA with different ratios of PCL/PLLA (CL/LA) and different molecular weights (Mn) were synthesized by ring‐opening polymerization (ROP) of L‐lactide with monohydric poly(ε‐caprolactone) (PCL‐OH) as a macro‐initiator. These copolymers were melt blended with PLLA/PCL (80/20) blend at contents between 3.0 and 20 phr (parts per hundred resin), and the effects of added PCL‐b‐PLLA on the mechanical, morphological, rheological, and thermodynamic properties of the PLLA/PCL/PCL‐b‐PLLA blends were investigated. The compatibility between PLLA matrix and PCL phase was enhanced with decreasing in CL/LA ratios or increasing in Mn for the added PCL‐b‐PLLA. Moreover, the crystallinity of PLLA matrix increased because of the added compatibilizers. The PCL‐b‐PLLA with the ratio of CL/LA (50/50) and Mn ≥ 39.0 kg/mol were effective compatibilizers for PLLA/PCL blends. When the content of PCL‐b‐PLLA is greater than or equal to 5 phr, the elongations at break of the PLLA/PCL/PCL‐b‐PLLA blends all reached approximately 180%, about 25 times more than the pristine PLLA/PCL(80/20) blend.  相似文献   

10.
A diblock copolymer system constituting both achiral and chiral blocks, polystyrene‐block‐poly(L ‐lactide) (PS‐PLLA), was designed for the examination of chiral effects on the self‐assembly of block copolymers (BCPs). A unique phase with three‐dimensional hexagonally packed PLLA helices in PS matrix, a helical phase (H*), can be obtained from the self‐assembly of PS‐rich PS‐PLLA with volume fraction of PLLA f = 0.34, whereas no such phase was found in racemic polystyrene‐block‐poly(D .L ‐lactide) (PS‐PLA) BCPs. Moreover, various interesting crystalline PS‐PLLA nanostructures can be obtained by controlling the crystallization temperature of PLLA (Tc,PLLA), leading to the formation of crystalline helices (PLLA crystallization directed by helical confined microdomain) and crystalline cylinders (phase transformation of helical nanostructure dictated by crystallization) when Tc,PLLA < Tg,PS (the glass transition temperature of PS) and Tc,PLLATg,PS, respectively. As a result, a spring‐like behavior of the helical nanostructure can be driven by crystallization so as to dictate the transformation (i.e., stretching) of helices and to result in crystalline cylinders. For PS‐PLLA with PLLA‐rich fraction (f = 0.65), another unique phase, a hexagonally packed core‐shell cylinder phase with helical sense (CS*), in which the PS microdomains appear as shells and PLLA microdomains appear as matrix and cores, can be found in the self‐assembly of PLLA‐rich PS‐PLLA BCPs. The formation of those novel phases: helix and core‐shell cylinder is attributed to the chiral effect on the self‐assembly of BCPs, so we named this PS‐PLLA BCP as chiral BCP (BCP*). For potential applications of those materials, the spring‐like behavior with thermal reversibility might provide a method for the design of switchable nanodevices, such as nanoscale actuators. In addition, the PLLA blocks can be hydrolyzed. After hydrolysis, helical nanoporous PS bulk and PS tubular texture can be obtained and used as templates for the formation of nanocomposites.

  相似文献   


11.
《先进技术聚合物》2018,29(6):1843-1851
Carboxymethyl starch (CMS) is a natural polymer derived from sago starch that is obtained from sago palm (Metroxylon spp.). Herein, CMS was used as a polysaccharide source in preparations of composite nanofibers with poly(L‐lactide acid) (PLLA). The incorporation of CMS with PLLA in nanofiber form has great potential to be used in biomedical applications. The composite PLLA/CMS nanofibers were fabricated by electrospinning technique at various ratios of CMS, which were 5, 10, 15, and 20% vol/vol. The composite nanofibers were characterized according to their physical morphology, chemical interaction, wettability, water uptake, and thermal and mechanical behaviors. The result showed that uniform and bead‐free nanofibers were produced at the low ratio of CMS while fractal and discontinuing fiber was observed at a high ratio of CMS. A better mechanical strength was obtained at low CMS ratio as compared with higher one. Fourier transform infrared results showed that there was an interaction between CMS and PLLA after electrospinning. The surface hydrophilicity and water uptake increased with increasing ratio of CMS. The results from the differential scanning calorimeter analysis showed the decrease of the glass transition (Tg) and cold crystallization temperature (Tcc) of the nanofiber after addition of CMS in PLLA.  相似文献   

12.
This work aims to evaluate the potential of a bioresorbable composite as material for bone regeneration. Surface‐modified calcium carbonate whiskers (CCWs) were prepared by grafting of ethylene glycol (EG) using 1,6‐hexamethylene diisocyanate as coupling agent, followed by ring‐opening polymerization of l ‐lactide initiated by the hydroxyl group of EG. The resulting PLLA‐EG‐g‐CCW was used as filler to reinforce a bioresorbable terpolymer, poly(l ‐lactide‐co‐trimethylene carbonate‐co‐glycolide) (PLTG). The mechanical properties and thermal stability of the PLTG/PLLA‐EG‐g‐CCW composites were greatly improved. Compared with neat PLTG, a 39.3% increase in tensile strength and 26.7% increase in elongation at break were obtained for the composite with 2 wt% PLLA‐EG‐g‐CCW filler. This was assigned to the reinforcement effect of evenly dispersed PLLA‐EG‐g‐CCW in the polymeric matrix. In fact, entanglement of PLLA grafts at the surface of PLLA‐EG‐g‐CCW with PLTG chains results in a homogeneous distribution of the filler in the matrix. Thus, the composites are simultaneously strengthened and toughened. The cytocompatibility of the materials was evaluated from cell morphology and 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay using L929 mouse fibroblast cell line. The results indicate that the composite presents very low cytotoxicity. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
A novel nucleating agent (TBC8‐t), self‐assembled with ptert‐butylcalix[8]arene (TBC8) and toluene, was used to manipulate the crystallization behavior of poly(L ‐lactic acid) (PLLA). Toluene molecules were used to adjust the crystallization structure of TBC8. Differential scanning calorimetry results show that the crystallization peak temperature (Tc) and crystallization rate (ΔHc/time) of PLLA nucleated with TBC8‐t are 132.3 °C and 0.24 J/gs, respectively, which are much higher than that with conventional nucleating agent‐talc (Tc = 119.3 °C, ΔHc/time = 0.13 J/gs). The results of polarized optical microscopy demonstrate that TBC8‐t could greatly enhance the crystallization rate of PLLA by increasing the nucleation rate rather than crystal growth rate. Along with an improvement of the crystallization rate, the crystalline morphology of PLLA is also affected by TBC8‐t. The addition of TBC8‐t transforms most of the original spherulite crystals into sheaf‐like crystals. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1235–1243, 2010  相似文献   

14.
Chain configuration influences phase behavior of blends of poly(methyl methacrylate) (PMMA) of different tactic configurations (syndiotacticity, isotacticity, or atacticity) with poly(L ‐lactic acid) (PLLA). Blends system of sPMMA/PLLA is immiscible with an asymmetry‐shaped UCST at ~250 °C. The phase behavior of the sPMMA/PLLA blend is similar to the aPMMA/PLLA blend that has been already proven in the previous work to exhibit similar UCST temperatures (230–250 °C) and asymmetry shapes in the UCST diagrams. On the other hand, the iPMMA/PLLA blend remains immiscible up to thermal degradation without showing any transition to UCST upon heating. The blend system with UCST, that is, sPMMA/PLLA, can be frozen in a state of miscibility by quenching to rapidly solidify from the homogeneous liquid at UCST, where the Tg‐composition relationship for the sPMMA/PLLA blend fits well with the Gordon‐Taylor Tg model with k = 0.15 and the blend's T leads to χ12 = ?0.26 for the UCST‐quenched sPMMA/PLLA blend. Both parameters (k and χ) as characterized for the frozen miscible blend suggest a relatively weak interaction between the two constituents (sPMMA and PLLA) in the blends. The interaction strength is likely not strong enough to maintain a thermodynamic miscibility when the blend is at ambient temperature or any lower temperatures below UCST. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2355–2369, 2008  相似文献   

15.
Films of poly(L ‐lactide‐co‐D ‐lactide) [P(LLA‐DLA); 95/5] and poly(L ‐lactide) [i.e., poly(L ‐lactide acid) (PLLA)] were prepared by crystallization from the melt, and a comparative study of the crystallization effects on the alkaline and proteinase K catalyzed hydrolysis of the films was carried out. The hydrolyzed films were investigated with gravimetry, differential scanning calorimetry, polarimetry, and gel permeation chromatography, and the results were compared with those reported for amorphous‐made specimens. The alkaline hydrolyzability of the P(LLA‐DLA) (95/5) and PLLA films was determined solely by the initial crystallinity (Xc) and was not affected by the content of the incorporated D ‐lactide (DLA) unit in the polymer chain; this was in marked contrast to the fact that the enzymatic hydrolyzability depended on not only the initial Xc value but also the DLA unit content. The alkaline hydrolysis rate of the P(LLA‐DLA) (95/5) and PLLA films and the enzymatic hydrolysis rate (REH) of the P(LLA‐DLA) (95/5) films decreased linearly as the initial Xc value increased. This meant that the hydrolyzability of the restricted amorphous regions was very similar to that of the free amorphous regions. In contrast, REH of the PLLA films decreased nonlinearly with the initial Xc value, and this nonlinear dependence was caused by the fact that in the PLLA films the restricted amorphous regions were much more hydrolysis‐resistant than the free amorphous regions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1064‐1075, 2005  相似文献   

16.
Poly(L ‐lactide) (PLLA) with terminal primary amino groups (PLLA‐NH2) was synthesized and used to construct PLLA‐grafted pullulan (Pul‐g‐PLLA). It consisted of a hydrophilic carboxymethyl Pul (CM‐Pul) main chain and hydrophobic PLLA graft chains that were created through a direct coupling reaction between PLLA‐NH2 and CM‐Pul using 2‐ethoxy‐1‐(ethoxycarbonyl)‐1,2‐dihydroquinoline as a condensation reagent. Pul‐g‐PLLAs with over 78 wt % sugar unit content were found to form nanometer‐sized aggregates in water. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5482–5487, 2004  相似文献   

17.
In this study, porous poly(L-lactic acid) (PLLA) films are prepared via a facile and low-cost approach using poly(ethylene glycol) (PEG) and solution casting. In contrast to most studies, the PEG/PLLA samples are further processed under different crystallization conditions (i.e., different PLLA crystallization temperatures) before PEG removal. As the PEG is extracted via solvent at higher PLLA crystallization temperatures, the resultant PLLA samples have larger pores. Interconnected fibrillar-shaped pores are found in all systems, and the fibrillar-porous structure width is ~150 nm–1.2 μm, as observed via scanning electron microscopy. These pore sizes can be tuned by adjusting the blend composition and crystallization temperature. In addition, PEG/PLLA blends are subjected to hydrolytic degradation analysis according to their crystallization conditions. Higher PLLA crystallization temperature yields higher PLLA crystallinity and larger pores, as well as reduced surface interaction with water. Therefore, the PLLA degradation rate is decreased. The developed PLLA films have potential applications in drug delivery and tissue engineering.  相似文献   

18.
Block copolymers create various types of nano‐structures, e. g., spheres, rods, cubes, and lamellae. This review discloses the dynamic macromolecular organization of block copolymers comprising poly(L ‐lactide) (PLLA) and poly(oxyethylene) (PEG) that allows to simulate elaborate biological systems. The block copolymers, AB‐ (PLLA‐PEG) and ABA‐type (PLLA‐PEG‐PLLA), are synthesized by ordinary lactide polymerization to have a controlled block length. They are dispersed into an aqueous medium to prepare nano‐scale particles, consisting of hydrophobic PLLA and hydrophilic PEG in the core and shell, respectively. Then, the particles are placed on a flat substrate by the casting method. The particles are detected as discoids by AFM, having shrunk with loss of water. Heat‐treatment of these particles at 60°C (above Tg of PLLA) gives rise to a collapse into small fragments, which then aggregate into bands with nano‐size width and thickness. The PLLA‐PEG bands align parallel to each other, while the PLLA‐PEG‐PLLA bands form a characteristic network resembling the neuron system created in animal tissue. As analyzed by TEM diffraction, each is composed of α‐crystal of PLLA whose c‐axis (molecular axis) is perpendicular to the substrate surface. Based on this fact, a doubly twisted chain structure of PLLA is proposed in addition to a plausible mechanism for the self‐organization of the block copolymers. Derivatives of the PLLA‐PEG block copolymers can form far more interesting nano‐architectures. An equimolar mixture of enantiomeric copolymers, PLLA‐PEG‐PLLA and PDLA‐PEG‐PDLA, forms a hydrogel that is thermo‐responsive. The terminal‐modified poly(L ‐lactide)‐block‐polyoxyethylene monocinnamate (PLLA‐PEG‐C) forms a highly stabilized nanofiber by the photo‐reaction of the cinnamates placed in the outer layer of the nanobands.  相似文献   

19.
Amphiphilic, biocompatible poly(N‐vinylpyrrolidone)‐b‐poly(l ‐lactide) (PVP‐b‐PLLA) block polymers were synthesized at 60 °C using a hydroxyl‐functionalized N,N‐diphenyldithiocarbamate reversible addition–fragmentation chain transfer (RAFT) agent, 2‐hydroxyethyl 2‐(N,N‐diphenylcarbamothioylthio)propanoate (HDPCP), as a dual initiator for RAFT polymerization and ring‐opening polymerization (ROP) in a one‐step procedure. 4‐Dimethylamino pyridine was used as the ROP catalyst for l ‐lactide. The two polymerization reactions proceeded in a controlled manner, but their polymerization rates were affected by the other polymerization process. This one‐step procedure is believed to be the most convenient method for synthesizing PVP‐b‐PLLA block copolymers. HDPCP can also be used for the one‐step synthesis of poly(N‐vinylcarbazole)‐b‐PLLA block copolymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1607–1613  相似文献   

20.
Gas microbubbles are an established clinical ultrasound contrast agent. They could also become a powerful magnetic resonance (MR) intravascular contrast agent, but their low susceptibility-induced contrast requires high circulating concentrations or the addition of exogenous paramagnetic nanoparticles for MR detection. In order to detect clinical in vivo concentrations of raw microbubbles via MR, an alternative detection scheme must be used. HyperCEST is an NMR technique capable of indirectly detecting signals from very dilute molecules (concentrations well below the NMR detection threshold) that exchange hyperpolarized 129Xe. Here, we use quantitative hyperCEST to show that microbubbles are very efficient hyperCEST agents. They can accommodate and saturate millions of 129Xe atoms at a time, allowing for their indirect detection at concentrations as low as 10 femtomolar. The increased MR sensitivity to microbubbles achieved via hyperCEST can bridge the gap for microbubbles to become a dual modality contrast agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号