首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary We present in a rather pedagogical way a new formulation of quantum mechanics. Our starting point is the path integral representation of the quantum-mechanical propagator analytically continued to imaginary timeW(X″, s″|X′, s′). We view the set of random paths contributing toW(X″, s″|X′, s′) as the manifold of solutions of a Langevin equation with a Gaussian white noise. We thus obtainW(X″, s″|X′, s′) as the noise-average of a suitable functional of the solution of the Langevin equation. The standard quantum-mechanical propagator is finally recovered by analytically continuingW(X″, s″|X′, s′) back to real time. The present approach allows for a straightforward application of standard methods of classical stochastic processes to quantum-mechanical problems and offers a new promising way to perform computer simulations of quantum-dynamical systems. To speed up publication, the author has agreed not to receive proofs which have been supervised by the Scientific Committee.  相似文献   

2.
The concept of quantum state is given in terms of classical probability for position in squeezed and rotated classical reference frames in phase space. Stationary states and energy levels of the quantum system are obtained in a classical formulation of quantum mechanics. The positive probability density of the harmonic oscillator position is obtained by solving a new eigenvalue equation of standard quantum mechanics instead of the Schrödinger equation. The orthogonality and completeness relations are found for the eigendistributions.  相似文献   

3.
Relying on some concepts introduced in a companion paper, we set foth in this article a formulation of quantum theory that yields the same experimental predictions as those obtained from von Neumann's formulation. Moreover, this is accomplished in such a manner as to obviate the need for observer intervention.  相似文献   

4.
We give picture-covariant formulations of the equations of motion for observables and states such that the Hamiltonian operator is transformed asH-0304;=U(t)HU (t) under a time-dependent unitary transformationU(t). Next, we consider the explicit and implicit covariance of Heisenberg's equations of motion for observables with respect to general transformations of coordinate operators. Most of our representation is spread out over a number of textbooks and articles, where the subject has been considered with greater or lesser clarity from different points of view.  相似文献   

5.
《Annals of Physics》1987,176(1):1-21
For a non-relativistic system with only continous degrees of freedom (no spin, for example), the original Wigner function can be used as an alternative to the density matrix to represent an arbitrary quantum state. Indeed, the quantum mechanics of such systems can be formulated entirely in terms of the Wigner function and other functions on phase space, with no mention of state vectors or operators. In the present paper this Wigner-function formulation is extended to systems having only a finite number of orthogonal states. The “phase space” for such a system is taken to be not continuous but discrete. In the simplest cases it can be pictured as an N×N array of points, where N is the number of orthogonal states. The Wigner function is a real function on this phase space, defined so that its properties are closely analogous to those of the original Wigner function. In this formulation, observables, like states, are represented by real functions on the discrete phase space. The complex numbers still play an important role: they appear in an essential way in the rule for forming composite systems.  相似文献   

6.
The quadrature distribution for a quantum damped oscillator is introduced in the frame of formulation of quantum mechanics based on a tomography scheme. The probability distribution for coherent and Fock states of the damped oscillator is expressed explicitly in terms of Gaussian and Hermite polynomials, respectively.  相似文献   

7.
8.
9.
The principles of the causal interpretation are embodied in a conformally invariant theory in Weyl space. The particle is represented by a spherically symmetric thin-shell solution to Einstein's equations. Use of the Gauss-Mainardi-Codazzi formalism yields new insights into the issues of nonlocality, the quantum potential, and the guidance mechanism.1. The issue of negative probabilities associated with second-order wave equations in the causal interpretation is discussed in Ref. 19.  相似文献   

10.
11.
12.
A recently developed unified theory of classical and quantum chaos, based on the de Broglie-Bohm (Hamilton-Jacobi) formulation of quantum mechanics is presented and its consequences are discussed. The quantum dynamics is rigorously defined to be chaotic if the Lyapunov number, associated with the quantum trajectories in de Broglie-Bohm phase space, is positive definite. This definition of quantum chaos which under classical conditions goes over to the well-known definition of classical chaos in terms of positivity of Lyapunov numbers, provides a rigorous unified definition of chaos on the same footing for both the dynamics. A demonstration of the existence of positive Lyapunov numbers in a simple quantum system is given analytically, proving the existence of quantum chaos. Breaking of the time-reversal symmetry in the corresponding quantum dynamics under chaotic evolution is demonstrated. It is shown that the rigorous deterministic quantum chaos provides an intrinsic mechanism towards irreversibility of the Schrodinger evolution of the wave function, without invoking ‘wave function collapse’ or ‘measurements’  相似文献   

13.
We apply an approximation to the centrifugal term and solve the two-body spinless-Salpeter equation (SSE) with the Yukawa potential via the supersymmetric quantum mechanics (SUSYQM) for arbitrary quantum numbers. Useful figures and tables are also included.  相似文献   

14.
We consider the problem of testing whether a given matrix in the Hilbert space formulation of quantum mechanics or a function considered in the phase space formulation of quantum theory represents a quantum state. We propose several practical criteria for recognising states in these two versions of quantum physics. After minor modifications, they can be applied to check positivity of any operators acting in a Hilbert space or positivity of any functions from an algebra with a ∗-product of Weyl type.  相似文献   

15.
《Physica A》1987,144(1):201-210
We explain the origin of the apparent discrepancy recently reported between results obtained by the phase-space formulation of quantum mechanics and conventional (Schrödinger) quantum mechanics. We show how to arrive at a complete agreement.  相似文献   

16.
The origin of the algebra of the non-commuting operators of quantum mechanics is explained in the general Fényes-Nelson stochastic models in which the diffusion constant is a free parameter. This is achieved by continuing the diffusion constant to imaginary values, a continuation which destroys the physical interpretation, but does not affect experimental predictions. This continuation leads to great mathematical simplification in the stochastic theory, and to an understanding of the entire mathematical formalism of quantum mechanics. It is more than a formal construction because the diffusion parameter is not an observable in these theories.  相似文献   

17.
18.
田贵花 《中国物理 B》2012,21(4):40301-040301
In this paper, we combine the perturbation method in supersymmetric quantum mechanics with the WKB method to restudy an angular equation coming from the wave equations for a Schwarzschild black hole with a straight string passing through it. This angular equation serves as a naive model for our investigation of the combination of supersym- metric quantum mechanics and the WKB method, and will provide valuable insight for our further study of the WKB approximation in real problems, like the one in spheroidal equations, etc.  相似文献   

19.
《Physics letters. A》1999,258(1):1-5
Using the semiunitary formulation of supersymmetric quantum mechanics quantum behavior of supersymmetric Paul trap is investigated, and correspondences of all observables in a complete set and their eigenvalues, wave functions and Schrödinger equations between the system and its superpartner are clarified.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号