首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
硝酰胺二聚体静电能和交换能的理论计算   总被引:2,自引:1,他引:1  
根据对称性匹配微扰理论, 并运用多个微扰和非微扰方法, 计算了硝酰胺二聚体在不同分子间距(R)时静电能和交换能. 这些具有轨道弛豫的静电能不仅含有第4级单、双、四和三重激发态项, 而且含有CCSD的第5级和更高级的能量项. 同时发现: 第4级的三重激发态能量项比第5级和更高级的能量项之和还重要. 求得的含有分子内电子相关效应的交换能达到了CCSD水平. 用于计算交换能关联校正项的单对交换近似在硝酰胺二聚体的范德华最小距离0.42 nm附近区域才较合理. 在R为0.32~1.42 nm范围, 静电能与R的关系有两种: 一是在小于等于0.47 nm时, (R-7.64; 二是大于0.47 nm时, (R-3.97. 交换能具有明显的短程作用特点, 其与R间的关系为指数衰减: 21.061exp(-R/0.318). 最后发现: 在硝酰胺二聚体中, 分子内的电子相关效应对和的影响很显著.  相似文献   

2.
Recently, three of us have proposed a method [Phys. Rev. Lett. 91, 33201 (2003)] for an accurate calculation of the dispersion energy utilizing frequency-dependent density susceptibilities of monomers obtained from time-dependent density-functional theory (DFT). In the present paper, we report numerical calculations for the helium, neon, water, and carbon dioxide dimers and show that for a wide range of intermonomer separations, including the van der Waals and short-range repulsion regions, the method provides dispersion energies with accuracies comparable to those that can be achieved using the current most sophisticated wave-function methods. If the dispersion energy is combined with (i) the electrostatic and first-order exchange interaction energies as defined in symmetry-adapted perturbation theory (SAPT) but computed using monomer Kohn-Sham (KS) determinants, and (ii) the induction energy computed using the coupled KS static response theory, (iii) the exchange-induction and exchange-dispersion energies computed using KS orbitals and orbital energies, the resulting method, denoted by SAPT(DFT), produces very accurate total interaction potentials. For the helium dimer, the only system with nearly exact benchmark values, SAPT(DFT) reproduces the interaction energy to within about 2% at the minimum and to a similar accuracy for all other distances ranging from the strongly repulsive to the asymptotic region. For the remaining systems investigated by us, the quality of the SAPT(DFT) interaction energies is so high that these energies may actually be more accurate than the best available results obtained with wave-function techniques. At the same time, SAPT(DFT) is much more computationally efficient than any method previously used for calculating the dispersion and other interaction energy components at this level of accuracy.  相似文献   

3.
The CCSD(T) interaction energies for the H‐bonded and stacked structures of the uracil dimer are determined at the aug‐cc‐pVDZ and aug‐cc‐pVTZ levels. On the basis of these calculations we can construct the CCSD(T) interaction energies at the complete basis set (CBS) limit. The most accurate energies, based either on direct extrapolation of the CCSD(T) correlation energies obtained with the aug‐cc‐pVDZ and aug‐cc‐pVTZ basis sets or on the sum of extrapolated MP2 interaction energies (from aug‐cc‐pVTZ and aug‐cc‐pVQZ basis sets) and extrapolated ΔCCSD(T) correction terms [difference between CCSD(T) and MP2 interaction energies] differ only slightly, which demonstrates the reliability and robustness of both techniques. The latter values, which represent new standards for the H‐bonding and stacking structures of the uracil dimer, differ from the previously published data for the S22 set by a small amount. This suggests that interaction energies of the S22 set are generated with chemical accuracy. The most accurate CCSD(T)/CBS interaction energies are compared with interaction energies obtained from various computational procedures, namely the SCS–MP2 (SCS: spin‐component‐scaled), SCS(MI)–MP2 (MI: molecular interaction), MP3, dispersion‐augmented DFT (DFT–D), M06–2X, and DFT–SAPT (SAPT: symmetry‐adapted perturbation theory) methods. Among these techniques, the best results are obtained with the SCS(MI)–MP2 method. Remarkably good binding energies are also obtained with the DFT–SAPT method. Both DFT techniques tested yield similarly good interaction energies. The large magnitude of the stacking energy for the uracil dimer, compared to that of the benzene dimer, is explained by attractive electrostatic interactions present in the stacked uracil dimer. These interactions force both subsystems to approach each other and the dispersion energy benefits from a shorter intersystem separation.  相似文献   

4.
In these years there was considerable interest inunderstanding of intermolecular forces in energetic(explosive) systems[1—3]. The supermolecular approach(SM) is widely adopted for calculating ab initio in-termolecular interactions. Nevertheless, it is unable toprovide physically meaningful interaction contribu-tions such as electrostatic, induction, repulsion anddispersion energies. In contrast, the symmetry-adaptedperturbation theory (SAPT)[4—8] has the ability to de-rive these correlated…  相似文献   

5.
A model chemistry for the evaluation of intermolecular interaction between aromatic molecules (AIMI Model) has been developed. The CCSD(T) interaction energy at the basis set limit has been estimated from the MP2 interaction energy near the basis set limit and the CCSD(T) correction term obtained by using a medium size basis set. The calculated interaction energies of the parallel, T-shaped,and slipped-parallel benzene dimers are -1.48, -2.46, and -2.48 kcal/mol, respectively. The substantial attractive interaction in benzene dimer, even where the molecules are well separated, shows that the major source of attraction is not short-range interactions such as charge-transfer but long-range interactions such as electrostatic and dispersion. The inclusion of electron correlation increases attraction significantly. The dispersion interaction is found to be the major source of attraction in the benzene dimer. The orientation dependence of the dimer interaction is mainly controlled by long-range interactions. Although electrostatic interaction is considerably weaker than dispersion interaction, it is highly orientation dependent. Dispersion and electrostatic interactions are both important for the directionality of the benzene dimer interaction.  相似文献   

6.
The structures and intermolecular interaction energies of 10 dimers, included in the mesogenic core structures of typical liquid crystalline (LC) compounds, are obtained at the MP2/6-31G(d) level of theory. It is proved that the dispersion energy significantly contributes to the total interaction energy of these dimers. Even when bulky substituents are introduced into the core part, the interaction energy is still large. It is also revealed that when a long intermolecular distance is provided by a high steric repulsion originating from the linkage of two phenyl groups, the dispersion energy is significantly small. However, in this range of intermolecular distances, the electrostatic energy caused by a strong quadrupole-quadrupole attractive interaction plays a dominant role, and as a result, a rather stable dimer is formed. In all 10 dimers, the dispersion, electrostatic, and exchange-repulsion energies strongly depend on the geometrical orientation of the molecules. The calculated interaction energies of these dimers are also compared with the corresponding experimentally measured viscosities. The results suggest an explicit linear relationship between the interaction energies and viscosities.  相似文献   

7.
We devise a nonlocal correlation energy functional that describes the entire range of dispersion interactions in a seamless fashion using only the electron density as input. The new functional is considerably simpler than its predecessors of a similar type. The functional has a tractable and robust analytic form that lends itself to efficient self-consistent implementation. When paired with an appropriate exchange functional, our nonlocal correlation model yields accurate interaction energies of weakly-bound complexes, not only near the energy minima but also far from equilibrium. Our model exhibits an outstanding precision at predicting equilibrium intermonomer separations in van der Waals complexes. It also gives accurate covalent bond lengths and atomization energies. Hence the functional proposed in this work is a computationally inexpensive electronic structure tool of broad applicability.  相似文献   

8.
9.
It is shown by an extensive benchmark on molecular energy data that the mathematical form of the damping function in DFT-D methods has only a minor impact on the quality of the results. For 12 different functionals, a standard "zero-damping" formula and rational damping to finite values for small interatomic distances according to Becke and Johnson (BJ-damping) has been tested. The same (DFT-D3) scheme for the computation of the dispersion coefficients is used. The BJ-damping requires one fit parameter more for each functional (three instead of two) but has the advantage of avoiding repulsive interatomic forces at shorter distances. With BJ-damping better results for nonbonded distances and more clear effects of intramolecular dispersion in four representative molecular structures are found. For the noncovalently-bonded structures in the S22 set, both schemes lead to very similar intermolecular distances. For noncovalent interaction energies BJ-damping performs slightly better but both variants can be recommended in general. The exception to this is Hartree-Fock that can be recommended only in the BJ-variant and which is then close to the accuracy of corrected GGAs for non-covalent interactions. According to the thermodynamic benchmarks BJ-damping is more accurate especially for medium-range electron correlation problems and only small and practically insignificant double-counting effects are observed. It seems to provide a physically correct short-range behavior of correlation/dispersion even with unmodified standard functionals. In any case, the differences between the two methods are much smaller than the overall dispersion effect and often also smaller than the influence of the underlying density functional.  相似文献   

10.
TATB二聚体分子间作用力及其气相几何构型研究   总被引:1,自引:0,他引:1  
宋华杰  肖鹤鸣  董海山 《化学学报》2007,65(12):1101-1109
采用对称性匹配微扰理论(SAPT)定量地求得TATB分子间的静电、交换排斥、诱导和色散等分子间作用能项, 从理论上揭示了TATB分子间作用本质; 在此基础上, 阐明了密度泛函在研究TATB二聚体时的适合性问题. 结果表明: (1)在有分子间氢键的TATB二聚体中, 库仑力足以与交换排斥力相抗衡, 起主导作用. (2)含分子间氢键的气相TATB二聚体的合理几何构型为平面型结构, 此结构的产生与色散力无关, 因此不管泛函是否含有近程色散作用, 均应预测到这种强极性的平面型结构. (3)在无分子间氢键的TATB二聚体中, 库仑力难以与交换排斥力相抗衡, 色散作用起到了关键作用; (4)在这种情况下, 未含有近程色散作用的密度泛函不可能给出合理构型. 恰好相反, 含有近程色散作用的密度泛函PBE0却能正确地预测到具有“平行重叠”结构且呈微弱极性的TATB二聚体, 色散力是导致这种构型产生的根本原因. “平行重叠”TATB二聚体是典型的色散体系, 其色散力占绝对主导地位并极有可能起源于两个TATB分子上π电子的相互作用. (5)对于所有TATB二聚体, 色散力或很显著或起主导作用. 由于密度泛函或未含有近程色散, 或只能部分地把近程色散表达出来, 这样使得当前所有密度泛函不可能精确求得这些二聚体的作用能.  相似文献   

11.
The intermolecular interaction energies of thiophene dimers have been calculated by using an aromatic intermolecular interaction (AIMI) model (a model chemistry for the evaluation of intermolecular interactions between aromatic molecules). The CCSD(T) interaction energy at the basis set limit has been estimated from the MP2 interaction energy near the basis set limit and the CCSD(T) correction term obtained by using a medium-size basis set. The calculated interaction energies of the parallel and perpendicular thiophene dimers are -1.71 and -3.12 kcal/mol, respectively. The substantial attractive interaction in the thiophene dimer, even where the molecules are well separated, shows that the major source of attraction is not short-range interactions such as charge transfer but rather long-range interactions such as electrostatic and dispersion. The inclusion of electron correlation increases the attraction significantly. The dispersion interaction is found to be the major source of attraction in the thiophene dimer. The calculated total interaction energy of the thiophene dimer is highly orientation dependent. Although electrostatic interaction is substantially weaker than dispersion interaction, it is highly orientation dependent, and therefore electrostatic interaction play an important role in the orientation dependence of the total interaction energy. The large attractive interaction in the perpendicular dimer is the cause of the preference for the herringbone structure in the crystals of nonsubstituted oligothiophenes (alpha-terthienyls), and the steric repulsion between the beta-substituents is the cause of the pi-stacked structure in the crystals of some beta-substituted oligothiophenes.  相似文献   

12.
Explicit formulae for the calculation of the exchange polarization energy in the interaction of closed-shell atoms or molecules have been derived by assuming neglect of the electron correlation within the noninteracting systems. The dispersion part of the exchange polarization energy has been represented as a sum of contributions arising from the interaction of two, three or four orbitals at a time. Each of these contributions is given by an integral involving the orbitals engaged in the interaction and the pair functions describing the dispersion interaction between these orbitals. The numerical calculations for the interaction of two ground-state beryllium atoms show that the exchange dispersion energy is positive and quenches about 5 to 10 per cent of the dispersion term. This results in a decrease of the interaction energy, computed as a sum of the SCF and dispersion components, by 6 to 30 per cent for interatomic distances ranging from 10 to 7 bohrs.Simplified formulae for estimating the exchange dispersion energy in the interaction of larger systems are also proposed and their accuracy is discussed.  相似文献   

13.
Stabilisation energies of stacked structures of C(6)H(6)...C(6)X(6) (X = F, Cl, Br, CN) complexes were determined at the CCSD(T) complete basis set (CBS) limit level. These energies were constructed from MP2/CBS stabilisation energies and a CCSD(T) correction term determined with a medium basis set (6-31G**). The former energies were extrapolated using the two-point formula of Helgaker et al. from aug-cc-pVDZ and aug-cc-pVTZ Hartree-Fock energies and MP2 correlation energies. The CCSD(T) correction term is systematically repulsive. The final CCSD(T)/CBS stabilisation energies are large, considerably larger than previously calculated and increase in the series as follows: hexafluorobenzene (6.3 kcal mol(-1)), hexachlorobenzene (8.8 kcal mol(-1)), hexabromobenzene (8.1 kcal mol(-1)) and hexacyanobenzene (11.0 kcal mol(-1)). MP2/SDD** relativistic calculations performed for all complexes mentioned and also for benzene[dot dot dot]hexaiodobenzene have clearly shown that due to relativistic effects the stabilisation energy of the hexaiodobenzene complex is lower than that of hexabromobenzene complex. The decomposition of the total interaction energy to physically defined energy components was made by using the symmetry adapted perturbation treatment (SAPT). The main stabilisation contribution for all complexes investigated is due to London dispersion energy, with the induction term being smaller. Electrostatic and induction terms which are attractive are compensated by their exchange counterparts. The stacked motif in the complexes studied is very stable and might thus be valuable as a supramolecular synthon.  相似文献   

14.
We have carried out extensive calculations for neutral, cationic protonated, anionic deprotonated phenol dimers. The structures and energetics of this system are determined by the delicate competition between H-bonding, H-π interaction and π-π interaction. Thus, the structures, binding energies and frequencies of the dimers are studied by using a variety of functionals of density functional theory (DFT) and M?ller-Plesset second order perturbation theory (MP2) with medium and extended basis sets. The binding energies are compared with those of highly reliable coupled cluster theory with single, double, and perturbative triple excitations (CCSD(T)) at the complete basis set (CBS) limit. The neutral phenol dimer is unique in the sense that its experimental rotational constants have been measured. The geometry of the neutral phenol dimer is governed by the hydrogen bond formed by two hydroxyl groups and the H-π interaction between two aromatic rings, while the structure of the protonated/deprotonated phenol dimers is additionally governed by the electrostatic and induction effects due to the short strong hydrogen bond (SSHB) and the charges populated in the aromatic rings in the ionic systems. Our salient finding is the substantial differences in structure between neutral, protonated, and deprotonated phenol dimers. This is because the neutral dimer involves in both H(π)···O and H(π)···π interactions, the protonated dimer involves in H(π)···π interactions, and the deprotonated dimer involves in a strong H(π)···O interaction. It is important to compare the reliability of diverse computational approaches employed in quantum chemistry on the basis of the calculational results of this system. MP2 calculations using a small cc-pVDZ basis set give reasonable structures, but those using extended basis sets predict wrong π-stacked structures due to the overestimation of the dispersion energies of the π-π interactions. A few new DFT functionals with the empirical dispersion give reliable results consistent with the CCSD(T)/CBS results. The binding energies of the neutral, cationic protonated, and anionic deprotonated phenol dimers are estimated to be more than 28.5, 118.2, and 118.3 kJ mol(-1), respectively. The energy components of the intermolecular interactions for the neutral, protonated and deprotonated dimers are analyzed.  相似文献   

15.
The reliability of the AMBER force field is tested by comparing the total interaction energy and dispersion energy with the reference data obtained at the density functional theory–symmetry‐adapted perturbation treatment (DFT–SAPT)/aug‐cc‐pVDZ level. The comparison is made for 194 different geometries of noncovalent complexes (H‐bonded, stacked, mixed, and dispersion‐bound), at the equilibrium distances as well as at longer distances (up to a relative distance of two). The total interaction energies agree very well with the reference data and only the strength of H‐bonded complexes is slightly underestimated. In the case of dispersion energy, the overall agreement is even better, with the exception of the stacked aromatic systems, where the empirical dispersion energy is overestimated. The use of AMBER interaction energy and AMBER dispersion energy for different types of noncovalent complexes at equilibrium as well as at longer distances is thus justified, except for a few cases, such as the water molecule, where the dispersion energy is highly inaccurate.  相似文献   

16.
Dimers composed of benzene (Bz), 1,3,5-triazine (Tz), cyanogen (Cy) and diacetylene (Di) are used to examine the effects of heterogeneity at the molecular level and at the cluster level on pi...pi stacking energies. The MP2 complete basis set (CBS) limits for the interaction energies (E(int)) of these model systems were determined with extrapolation techniques designed for correlation consistent basis sets. CCSD(T) calculations were used to correct for higher-order correlation effects (deltaE(CCSD)(T)(MP2)) which were as large as +2.81 kcal mol(-1). The introduction of nitrogen atoms into the parallel-slipped dimers of the aforementioned molecules causes significant changes to E(int). The CCSD(T)/CBS E(int) for Di-Cy is -2.47 kcal mol(-1) which is substantially larger than either Cy-Cy (-1.69 kcal mol(-1)) or Di-Di (-1.42 kcal mol(-1)). Similarly, the heteroaromatic Bz-Tz dimer has an E(int) of -3.75 kcal mol(-1) which is much larger than either Tz-Tz (-3.03 kcal mol(-1)) or Bz-Bz (-2.78 kcal mol(-1)). Symmetry-adapted perturbation theory calculations reveal a correlation between the electrostatic component of E(int) and the large increase in the interaction energy for the mixed dimers. However, all components (exchange, induction, dispersion) must be considered to rationalize the observed trend. Another significant conclusion of this work is that basis-set superposition error has a negligible impact on the popular deltaE(CCSD)(T)(MP2) correction, which indicates that counterpoise corrections are not necessary when computing higher-order correlation effects on E(int). Spin-component-scaled MP2 (SCS-MP2 and SCSN-MP2) calculations with a correlation-consistent triple-zeta basis set reproduce the trends in the interaction energies despite overestimating the CCSD(T)/CBS E(int) of Bz-Tz by 20-30%.  相似文献   

17.
The CCSD(T) level interaction energies of eight orientations of nitrobenzene-benzene complexes and nine orientations of nitrobenzene dimers at the basis set limit have been estimated. The calculated interaction energy of the most stable slipped-parallel (C(s)) nitrobenzene-benzene complex was -4.51 kcal/mol. That of the most stable slipped-parallel (antiparallel) (C(2h)) nitrobenzene dimer was -6.81 kcal/mol. The interaction energies of these complexes are significantly larger than that of the benzene dimer. The T-shaped complexes are substantially less stable. Although nitrobenzene has a polar nitro group, electrostatic interaction is always considerably weaker than the dispersion interaction. The dispersion interaction in these complexes is larger than that in the benzene dimer, which is the cause of the preference of the slipped-parallel orientation in these complexes.  相似文献   

18.
We report third-order symmetry-adapted perturbation theory (SAPT) calculations for several dimers whose intermolecular interactions are dominated by induction. We demonstrate that the single-exchange approximation (SEA) employed to derive the third-order exchange-induction correction (E(exch-ind)((30))) fails to quench the attractive nature of the third-order induction (E(ind)((30))), leading to one-dimensional potential curves that become attractive rather than repulsive at short intermolecular separations. A scaling equation for (E(exch-ind)((30))), based on an exact formula for the first-order exchange correction, is introduced to approximate exchange effects beyond the SEA, and qualitatively correct potential energy curves that include third-order induction are thereby obtained. For induction-dominated systems, our results indicate that a "hybrid" SAPT approach, in which a dimer Hartree-Fock calculation is performed in order to obtain a correction for higher-order induction, is necessary not only to obtain quantitative binding energies but also to obtain qualitatively correct potential energy surfaces. These results underscore the need to develop higher-order exchange-induction formulas that go beyond the SEA.  相似文献   

19.
硝酸甲酯分子间相互作用的DFT和ab initio比较   总被引:5,自引:0,他引:5  
用密度泛函理论(DFT)和从头算(ab initio)方法,分别在B3LYP/6 31G和HF/6 31G水平上求得硝酸甲酯三种二聚体的全优化几何构型和电子结构,并用6 311G和6 311++G基组进行总能量计算.对HF/6 31G计算结果进行MP4SDTQ电子相关校正.在各基组下均进行基组叠加误差(BSSE)和零点能(ZPE)校正求得结合能.对6 31G优化构型作振动分析并基于统计热力学求得200~600 K温度下单体和二聚体的热力学性质.详细比较两种方法的相应计算结果,发现DFT求得的分子间距离较短,分子内键长较长,所得结合能均小于相应ab initio计算值.  相似文献   

20.
Localized molecular orbitals (LMO) are used as basis for an MP2 treatment (LMP2) of electron correlation energies. The major aim is an improved understanding of the non-covalent interactions in large molecules with an emphasis on intra-molecular dispersion effects. A partitioning of the inter-fragment electron correlation energy into electron pairs of different orbital type (i.e., sigma, pi, lone-pairs) is presented. The benzene dimer, 1,4-diphenylbutane conformations, and the tyrosine-glycine dipeptide are used as model systems. For the benzene dimer, comparisons with CCSD(T) data are made in order to analyse the MP2 problems for pi-pi stacking. A comparison of phenyl-phenyl interactions in the benzene dimer and for 1,4-diphenylbutane conformations reveals a very good transferability of dispersion-type contributions to binding from an inter-molecular to an intra-molecular situation. In both systems, the relative (percentage) contributions of sigma-sigma, sigma-pi, and pi-pi pairs to the total inter-fragment correlation energy is a clear signature for the binding mode (pi-stacked vs. T-shaped). For various benzene dimer conformations, we find a linear relation between the MP2 interaction energy error and the correlation contribution from pi-pi pairs. In the dipeptide, also dispersion-type electron correlations between the glycyl amino acid residue and the phenol group are most relevant for folding. This convincingly explains problems of DFT with such systems reported previously. Although in this case only one aromatic ring (and a glycyl moiety) is involved, the same sigma-sigma, sigma-pi, and pi-pi correlations seem to dominate the shape of the potential energy surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号