首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variation of the specific thrust RY on the angle of inclination of the wall is analyzed within the framework of the ideal gas model using the results of specific impulse and flow rate calculations for conical convergent nozzles. It is shown that in unchoked regimes nozzles with different have almost the same values of RY for both subcritical and supercritical pressure ratios c. On the interval C < 6 typical of convergent nozzles conical convergent nozzles with =30–90° have almost the same value of the specific thrust, maximal relative to the RY of nozzles with < 30°. In the presence of viscosity forces local boundary layer separation may occur in the neighborhood of the entrance section of the convergent nozzle. A method of constructing a separationless convergent nozzle contour with enhanced thrust is developed on the basis of a boundary layer separation criterion. The separationless contour is determined for given values of the flow rate, specific heat ratio, Reynolds number, wall temperature and initial boundary layer displacement thickness.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 158–164, January–February, 1990.  相似文献   

2.
G. Emanuel  H. Hekiri 《Shock Waves》2007,17(1-2):85-94
A theory is developed for the vorticity and its substantial derivative just downstream of a curved shock wave, the resulting formulas are exact, algebraic, and explicit. Analysis is for a cylinder-wedge or sphere-cone body, at zero incidence, whose downstream half-angle is θb. Derived formulas directly depend only on the ratio of specific heats, γ, the freestream Mach number, M 1, the local slope and curvature of the shock, and the dimensionality parameter, σ, which is zero for a two-dimensional shock and unity for an axisymmetric shock. In turn, the slope and curvature depend on γ, M 1, and θb. Numerical results are provided for a bow shock in which θb is 5°, 10°, or 15°, M 1 is 2, 4, or 6, and γ = 1.4. There is little dependence on the half angle but a strong dependence on the freestream Mach number and on dimensionality. For vorticity and its substantial derivative, the dimensionality dependence gradually decreases with increasing Mach number. In comparison to the two-dimensional case, an axisymmetric shock generates considerable vorticity in a region relatively close to the symmetry axis. Moreover, the magnitude of the vorticity, in this region, is further enhanced in the flow downstream of the shock. This dimensionality difference in vorticity and its substantial derivative is attributed to the three-dimensional relief effect in an axisymmetric flow.
  相似文献   

3.
Within the framework of the ideal, i.e., inviscid and non-heat conducting, gas model we consider the problem of designing the supersonic section of a two-dimensional or axisymmetric nozzle realizing a uniform supersonic flow limitingly similar with a sonic flow when the choked flow involves a curvilinear sonic line. Emphasis is placed on nozzles with abruptly or steeply converging subsonic sections and a strongly curved sonic line formed by the C -characteristics of the expansion fan with the focus at the lower bend point of the vertical section of the subsonic contour. In the two-dimensional case, the least possible greater-than-unity Mach number M em at the nozzle exit corresponds to the flow in which the first intersection of the C +-characteristics originated at the closing C -characteristic of the expansion fan falls on the unknown contour of its supersonic part. For a uniform flow with M e < M em the intersection of C +-characteristics beneath the unknown contour make impossible its construction. A part of the contour realizing a uniform flow with M em > 1 ensures a limitingly rapid flow acceleration and forms the initial region of the supersonic generator of a maximum-thrust nozzle. For this reason, in the case of a curvilinear sonic line the supersonic generators of these nozzles have two, rather than one, bends, which, however, is interesting only for the theory. At least, in the calculated examples the thrusts of the nozzles with one and two bends differ only by a hundredth or even thousandth fractions of per cent.  相似文献   

4.
The physical mechanism for generation of streamwise vortices (or rib vortices) in the cylinder wake is numerically investigated with a finite-difference scheme. Rayleigh's theory of centrifugal instability for inviscid axisymmetric flow is extended to analyze the 2-D primary flows. Accordingly, an analytical dimensionless groupRay=−(r/v θ)∂v θ/∂r−1 is derived, wherev θ represents the velocity of a fluid element relative to the oncoming flow,r is the local curvature radius of the element pathline. Centrifugal instability occurs whenRay>0. Stability analyses are carried out with this discriminant for primary flows at different time levels in a half shedding period of the von Kármán (or vK) vortices. Unstable areas are identified and the locations of rib vortices are coincident well with the unstable areas within the first wavelength of vK vortices behind the cylinder. The numerical results also show that rib vortices experience amplification in this region. It is apparent that centrifugal instability plays an important role in the generation of rib vortices in the cylinder wake. The project spported by the National Natural Science Foundation of China  相似文献   

5.
The formation of ozone when partially dissociated oxygen flows out of a supersonic nozzle has been investigated experimentally and theoretically. The supersonic flow of a chemically reacting gas mixture containing excess O atoms is calculated in the one-dimensional approximation for a class of plane wedge-shaped nozzles. It is shown that for initial gas pressures ahead of the nozzle inlet of about 10 atm and a temperatureT 0=1000 K in nozzles with a total vertex angle of 30°C and a throat dimensionh.=1 mm it is possible to obtain an ozone concentration of about 1%, which is comparable with ordinary ozonizers, while the output of the device is two to three orders greater. Experiments on a shock tube fitted with a nozzle to measure the absorption of UV radiation by oxygen recombining in the nozzle under highly nonoptimal conditions revealed the presence in the flow of ozone molecules formed as a result of O+O2 recombination.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 139–148, November–December, 1994.  相似文献   

6.
Orientational changes in monodomains of flow-aligning liquid crystals, 4-n-pentyl-4′-cyanobiphenyl and N-(4-methoxybenzylidene)-4-butylaniline, were studied during shear and recovery in a linear shearing device fitted to an optical microscope. Planar alignment (director in the shear plane) allows the study of twist effects and was generated by strong planar anchoring at the walls with orientations in a range of 0–90° with the shear direction. While being held back by the anchoring walls, shear caused the bulk director to rotate towards a steady-state alignment angle in the shear direction (Leslie angle θL). The transient director rotation was observed with conoscopy. It was found that increasing the initial alignment towards the vorticity direction increased the measured θL. Upon stopping the flow, the bulk director returned to its initial state. With initial alignment orientation changing from parallel to perpendicular to the flow direction, the rate of the twist-driven recovery process increases. This rate increase is not seen in the splay-driven recovery which is constant and consistently faster than twist-driven recovery at all orientations studied. Received: 10 December 1998/Accepted: 7 June 1999  相似文献   

7.
A mixed convection flow of an optically dense viscous incompressible fluid along a horizontal circular cylinder has been studied with the effect of radiation when the surface temperature is uniform. Using appropriate transformations, the boundary layer equations governing the flow are reduced to local nonsimilarity form. Solutions of the governing equations are obtained employing the implicit finite difference method. Effects of varying the pertinent parameters, such as, the Planck number, R w the surface temperature parameter, θw and the buoyancy parameter, α on the local skin-friction and local heat transfer coefficients are shown graphically as well as in tabular form against the curvature parameter ξ, while taking Prandtl number Pr = 1.0. It is found that an increase of R dw or α leads to increases in the values of the local skin-friction and the local rate of heat transfer coefficients. At the stagnation point asymptotic solutions for large value of α are also obtained and the effect of the other pertinent parameters on the formation of the flow separation are studied. Received on 28 July 1998  相似文献   

8.
The near-ground flow structure of tornadoes is of utmost interest because it determines how and to what extent civil structures could get damaged in tornado events. We simulated tornado-like vortex flow at the swirl ratios of S = 0.03–0.3 (vane angle θv = 15°–60°), using a laboratory tornado simulator and investigated the near-ground-vortex structure by particle imaging velocimetry. Complicated near-ground flow was measured in two orthogonal views: horizontal planes at various elevations (z = 11, 26 and 53 mm above the ground) and the meridian plane. We observed two distinct vortex structures: a single-celled vortex at the lowest swirl ratio (S = 0.03, θv = 15°) and multiple suction vortices rotating around the primary vortex (two-celled vortex) at higher swirl ratios (S = 0.1–0.3, θv = 30°–60°). We quantified the effects of vortex wandering on the mean flow and found that vortex wandering was important and should be taken into account in the low swirl ratio case. The tangential velocity, as the dominant velocity component, has the peak value about three times that of the maximum radial velocity regardless of the swirl ratio. The maximum velocity variance is about twice at the high swirl ratio (θv = 45°) that at the low swirl ratio (θv = 15°), which is contributed significantly by the multiple small-scale secondary vortices. Here, the results show that not only the intensified mean flow but greatly enhanced turbulence occurs near the surface in the tornado-like vortex flow. The intensified mean flow and enhanced turbulence at the ground level, correlated with the ground-vortex interaction, may cause dramatic damage of the civil structures in tornadoes. This work provides detailed characterization of the tornado-like vortex structure, which has not been fully revealed in previous field studies and laboratory simulations. It would be helpful in improving the understanding of the interaction between the tornado-like vortex structure and the ground surface, ultimately leading to better predictions of tornado-induced wind loads on civil structures.  相似文献   

9.
In this paper, we consider a two-dimensional homogeneous isotropic elastic material state in the arch-like region arb, 0 ≤ θα, where (r, θ) denote plane polar coordinates. We assume that three of the edges r = a, r = b, θ = α are traction-free, while the edge θ = 0 is subjected to an (in plane) self-equilibrated load. We define an appropriate measure for the Airy stress function φ and then we establish a clear relationship with the Saint-Venant's principle on such regions. We introduce a cross-sectional integral function I(θ) which is shown to be a convex function and satisfies a second-order differential inequality. Consequently, we establish a version of the Saint-Venant principle for such a curvilinear strip, without requiring of any condition upon the dimensions of the arch-like region.  相似文献   

10.
Experimental data for a two-dimensional (2-D) turbulent boundary layer (TBL) flow and a three-dimensional (3-D) pressure-driven TBL flow outside of a wing/body junction were obtained for an approach Reynolds number based on momentum thickness of Re θ =23,200. The wing shape had a 3:2 elliptical nose, NACA 0020 profiled tail, and was mounted on a flat wall. Some Reynolds number effects are examined using fine spatial resolution (Δy +=1.8) three-velocity-component laser-Doppler velocimeter measurements of mean velocities and Reynolds stresses at nine stations for Re θ =23,200 and previously reported data for a much thinner boundary layer at Re θ =5,940 for the same wing shape. In the 3-D boundary layers, while the stress profiles vary considerably along the flow due to deceleration, acceleration, and skewing, profiles of the parameter correlate well and over available Reynolds numbers. The measured static pressure variations on the flat wall are similar for the two Reynolds numbers, so the vorticity flux and the measured mean velocities scaled on wall variables agree closely near the wall. The stresses vary similarly for both cases, but with higher values in the outer region of the higher Re θ case. The outer layer turbulence in the thicker high Reynolds number case behaves similarly to a rapid distortion of the flow, since stream-wise vortical effects from the wall have not diffused completely through the boundary layer at all measurement stations. Received: 9 June 2000/Accepted: 26 January 2001  相似文献   

11.
Measurements and scaling of wall shear stress fluctuations   总被引:2,自引:0,他引:2  
Measurements of velocity and wall shear stress fluctuations were made in an external turbulent boundary layer developed over a towed surface-piercing flat plate. An array of eight flush-mounted wall shear stress sensors was used to compute the space-time correlation function. A methodology for in situ calibration of the sensors for ship hydrodynamic applications is presented. The intensity of the wall shear stress fluctuations, τ rms/τ avg was measured as 0.25 and 0.36 for R θ =3,150 and 2,160 respectively. The probability density is shown to exhibit positive skewness, and lack of flow reversals at the wall. Correlations between velocity and wall shear stress fluctuations are shown to collapse with outer boundary layer length and velocity scales, verifying the existence of large-scale coherent structures which convect and decay along the wall at an angle of inclination varying from 10 to 13° over the range of Reynolds numbers investigated. The wall shear stress convection velocity determined from narrow band correlation measurements is shown to scale with outer variables. The space-time correlation of the wall shear is shown to exhibit a well-defined convective ridge, and to decay 80% over approximately for R θ =3,150. Published online: 7 November 2002  相似文献   

12.
The flow-induced microstructure of a mesophase pitch was studied within custom-made dies for changing wall shear rates from 20 to 1,100 s − 1, a flow scenario that is typically encountered during fiber spinning. The apparent viscosity values, measured at the nominal wall shear rates ranging from 500 to 2,500 s − 1 using these dies, remain fairly constant. The microstructure was studied in two orthogonal sections: rθ (cross section) and rz (longitudinal mid plane). In these dies, the size of the microstructure gradually decreases toward the wall (to as low as a few micrometers), where shear rate is highest. Furthermore, as observed in the rθ plane of the capillary, for a significant fraction of the cross section, discotic mesophase has a radial orientation. Thus, the directors of disc-like molecules were aligned in the vorticity (θ) direction. As confirmed from the microstructure in the rz plane, most of the discotic molecules remain nominally in the flow plane. Orientation of the pitch molecules in the shear flow conditions is consistent with that observed in controlled low-shear rheometric experiments reported earlier. Microstructral investigation suggests that the radial orientation of carbon fibers obtained from a mesophase pitch originates during flow of pitch through the die.  相似文献   

13.
Conclusions The proposed method and program for calculating the compressible turbulent boundary layer in rocket engine nozzles with gas film cooling make it possible to determine the specific impulse losses due to friction, the heat fluxes and other characteristics of the flow. The calculations are based on the numerical solution of the equations of gas dynamics in the boundary layer approximation using a three-parameter differential turbulence model.The calculations for nozzles without film cooling showed that the contours occupying a narrow interval between the families of contours with uniform and variational characteristics have the minimum impulse losses due to friction and dispersion. In contrast to the known results, the loss minimum is displaced relative to nozzles with a variational characteristic (Rao nozzles) towards truncated nozzles with a uniform characteristic.The dependence of the maximum heat transfer to the wall in the critical throat section of the nozzle on the rate of flow of fuel into the film has been determined for nozzles with film cooling. It is shown that as the film flow rate increases, the friction losses decrease, and the minimum of the impulse losses due to friction and dispersion is shifted towards the contours with a variational characteristic, which have the minimum dispersion losses. The total impulse losses, which take into account the change in the fuel component ratio in the flow core due to the diversion of part of the fuel into the film, increase with increase in the film flow rate.The results of our numerical investigation of the effect of the contour shape and film flow rate indicate that the contour with a variational characteristic, which has near-minimum specific impulse losses due to friction and dispersion, should be used as the optimum contour for LRE nozzles.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 82–93, May–June, 1993.deceased.The authors wish to thank their colleagues at the Énergomash NPO L. P. Vereshchak and L. K. Danilyuk for assisting with the calculations, the participants in G. A. Lyubimov's seminar for discussing the results obtained, and D. A. Mel'nikov, U. G. Pirumov, and A. A. Sergienko for valuable advice.  相似文献   

14.
The boundary layer problem of a power-law fluid flow with fluid injection on a wedge whose surface is moving with a constant velocity in the opposite direction to that of the uniform mainstream is analyzed. The free stream velocity, the injection velocity at the surface, moving velocity of the wedge surface, the wedge angle and the power law index of non-Newtonian fluid are assumed variables. The fourth order Runge–Kutta method modified by Gill is used to solve the non-dimensional boundary layer equations for non-Newtonian flow field. Without fluid injection, for every angle of wedge β, a limiting value for velocity ratio λ cr (velocity of the wedge surface/velocity of the uniform flow) is found for each power-law index n. The value of λ cr increases with the increasing wedge angle β. The value of wedge angle also restricts the physical characteristics of the fluid to be used. The effects of the different parameters on velocity profile and on skin friction are studied and the drag reduction is discussed. In case of C = 2.5 and velocity ratio λ = 0.2 for wedge angle β = 0.5 with the fluid with power law-index n = 0.5, 48.8% drag reduction is obtained.  相似文献   

15.
The effect of transonic flow nonuniformity on the profiling of optimal plug nozzles is studied in the inviscid gas approximation. Sonic and supersonic regions providing maximum thrust for given nozzle dimensions and a given outer pressure are designed for given subsonic contours and calculated nonuniform transonic flows. As in the case of uniform flow on a cylindrical sonic surface, the initial regions of the designed contours satisfy the condition that in these regions the flow Mach number is unity or near-unity. In all the examples calculated, the optimal plug nozzles produce a greater thrust than the optimal axisymmetric and annular nozzles with a near-axial flow for the same lengths and the same gas flow rates through the nozzle. It is established that contouring without regard for transonic flow nonuniformity can result in considerable thrust losses. However, these losses are due only to a decrease in the flow rate, while the specific thrust may even increase slightly.  相似文献   

16.
A survey is made of the standard deviation of the streamwise velocity fluctuations in near-wall turbulence and in particular of the Reynolds-number-dependency of its peak value. The following canonical flow geometries are considered: an incompressible turbulent boundary layer under zero pressure gradient, a fully developed two-dimensional channel and a cylindrical pipe flow. Data were collected from 47 independent experimental and numerical studies, which cover a Reynolds number range of R θ=U θ/v=300−20,920 for the boundary layer with θ the momentum thickness and R +=u *R/v=100-4,300 for the internal flows with R the pipe radius or the channel half-width. It is found that the peak value of the rms-value normalised by the friction velocity, u *, is within statistical errors independent of the Reynolds number. The most probable value for this parameter was found to be 2.71±0.14 and 2.70±0.09 for the case of a boundary layer and an internal flow, respectively. The present survey also includes some data of the streamwise velocity fluctuations measured over a riblet surface. We find no significant difference in magnitude of the normalised peak value between the riblet and smooth surfaces and this property of the normalised peak value may for instance be exploited to estimate the wall shear stress from the streamwise velocity fluctuations. We also consider the skewness of the streamwise velocity fluctuations and find its value to be close to zero at the position where the variance has its peak value. This is explained with help of the equations of the third-order moment of velocity fluctuations. These results for the peak value of the rms of the streamwise velocity fluctuations and also the coincidence of this peak with the zero value of the third moment can be interpreted as confirmation of local equilibrium in the near-wall layer, which is the basis of inner-layer scaling. Furthermore, these results can be also used as a requirement which turbulence models for the second and triple velocity correlations should satisfy. The authors are indebted to Prof. P. Bradshaw for making available his list of references on this topic and for his remarks on “active” and “inactive” motions. We also gratefully acknowledge discussions with Prof. I. Castro regarding the value of σ u + above rough walls.  相似文献   

17.
A uniform potential flow past a porous circular cylinder with a core of different permeability is discussed. The porous circular cylinder is slightly deformed whose radius is r=r1(1+ecosm q){r=r_1(1+\epsilon \cos m \theta)} , where | e | << 1{\mid\epsilon\mid\ll 1} and m is a positive integer. Here r, θ are the polar coordinates and r 1 is the characteristic radius of the cylinder. The drag force exerted by the exterior flow on the surface of the cylinder is calculated and it depends on the thickness of the porous material and on the permeabilities of the two porous regions. As special cases, porous cylinder with hollow core, rigid core, and deformed cylinder is discussed.  相似文献   

18.
A three-dimensional separated flow behind a swept, backward-facing step is investigated by means of DNS for Re H = C H/ν = 3000 with the purpose to identify changes in the statistical turbulence structure due to a variation of the sweep angle α from 0° up to 60°. With increasing sweep angle, the near-wall turbulence structure inside the separation bubble and downstream of reattachment changes due to the presence of an edge-parallel mean flow component W. Turbulence production due to the spanwise shear ∂W/∂y at the wall becomes significant and competes with the processes caused by impingement of the separated shear-layer. Changes due to a sweep angle variation can be interpreted in terms of two competing velocity scales which control the global budget of turbulent kinetic energy: the step-normal component U = C cosα throughout the separated flow region and the velocity difference C across the entire shear-layer downstream of reattachment. As a consequence, the significance of history effects for the development into a two-dimensional boundary layer decreases with increasing sweep angle. For α ≥50°, near-wall streaks tend to form inside the separated flow region. Received 7 November 2000 and accepted 9 July 2002 Published online 3 December 2002 RID="*" ID="*" Part of this work was funded by the Deutsche Forschungsgemeinschaft within Sfb 557. Computer time was provided by the Konrad-Zuse Zentrum (ZIB), Berlin. Communicated by R.D. Moser  相似文献   

19.
Effect of local forcing on a turbulent boundary layer   总被引:6,自引:0,他引:6  
An experimental study is performed to analyze flow structures behind local suction and blowing in a flat-plate turbulent boundary layer. The local forcing is given to the boundary layer flow by means of a sinusoidally oscillating jet issuing from a thin spanwise slot at the wall. The Reynolds number based on the momentum thickness is about Re θ =1700. The effects of local forcing are scrutinized by altering the forcing frequency (0.011 ≤ f+≤ 0.044). The forcing amplitude is fixed at A 0=0.4. It is found that a small local forcing reduces the skin friction and the skin friction reduction increases with the forcing frequency. A phase-averaging technique is employed to capture the large-scale vortex evolution. An organized spanwise vortical structure is generated by the local forcing. The cross-sectional area of vortex and the time fraction of vortex are examined by changing the forcing frequency. An investigation of the random fluctuation components reveals that turbulent energy is concentrated near the center of vortical structures. Received: 17 March 2000/Accepted: 3 April 2001  相似文献   

20.
Separating oscillating flows in an internal, adverse pressure gradient geometry are studied experimentally. Simultaneous velocity and pressure measurements demonstrate that the minor losses associated with oscillating flow in an adverse pressure gradient geometry can be smaller or larger than those for steady flow. Separation is found to begin high in the diffuser and propagate downward. The flow is able to remain attached further into the diffuser with larger Reynolds numbers, small displacement amplitudes, and smaller diffuser angles. The extent of separation grows with L 0/h. The minor losses grow with increasing displacement amplitude in the measured range 10 < L 0/h < 40. Losses decrease with increasing Re δ in the measured range of 380 < Re δ < 740. It is found that the losses increase with increasing diffuser angle over the measured range of 12° < θ < 30°. The nondimensional acoustic power dissipation increases with Reynolds number in the measured range and decreases with displacement amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号