首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An n×n ray pattern matrix S is said to be spectrally arbitrary if for every monic nth degree polynomial f(λ) with coefficients from C, there is a complex matrix in the ray pattern class of S such that its characteristic polynomial is f(λ). In this article we give new classes of spectrally arbitrary ray pattern matrices.  相似文献   

2.
Spectrally arbitrary ray patterns   总被引:2,自引:0,他引:2  
An n×n ray pattern A is said to be spectrally arbitrary if for every monic nth degree polynomial f(x) with coefficients from C, there is a matrix in the pattern class of A such that its characteristic polynomial is f(x). In this article the authors extend the nilpotent-Jacobi method for sign patterns to ray patterns, establishing a means to show that an irreducible ray pattern and all its superpatterns are spectrally arbitrary. They use this method to establish that a particular family of n×n irreducible ray patterns with exactly 3n nonzeros is spectrally arbitrary. They then show that every n×n irreducible, spectrally arbitrary ray pattern has at least 3n-1 nonzeros.  相似文献   

3.
This work is part of a doctoral thesis, written under the supervision of Prof. A. Berman. It was supported by the Fund for Promotion of Research at the Technion.  相似文献   

4.
The energy of a graph is equal to the sum of the absolute values of its eigenvalues. The energy of a matrix is equal to the sum of its singular values. We establish relations between the energy of the line graph of a graph G and the energies associated with the Laplacian and signless Laplacian matrices of G.  相似文献   

5.
In this paper, we characterize all extremal trees with the largest Laplacian spectral radius in the set of all trees with a given degree sequence. Consequently, we also obtain all extremal trees with the largest Laplacian spectral radius in the sets of all trees of order n with the largest degree, the leaves number and the matching number, respectively.  相似文献   

6.
Motivated by a Mohar’s paper proposing “how to order trees by the Laplacian coefficients”, we investigate a partial ordering of trees with diameters 3 and 4 by the Laplacian coefficients. These results are used to determine several orderings of trees by the Laplacian coefficients.  相似文献   

7.
The spectra of some trees and bounds for the largest eigenvalue of any tree   总被引:2,自引:0,他引:2  
Let T be an unweighted tree of k levels such that in each level the vertices have equal degree. Let nkj+1 and dkj+1 be the number of vertices and the degree of them in the level j. We find the eigenvalues of the adjacency matrix and Laplacian matrix of T for the case of two vertices in level 1 (nk = 2), including results concerning to their multiplicity. They are the eigenvalues of leading principal submatrices of nonnegative symmetric tridiagonal matrices of order k × k. The codiagonal entries for these matrices are , 2 ? j ? k, while the diagonal entries are 0, …, 0, ±1, in the case of the adjacency matrix, and d1d2, …, dk−1dk ± 1, in the case of the Laplacian matrix. Finally, we use these results to find improved upper bounds for the largest eigenvalue of the adjacency matrix and of the Laplacian matrix of any given tree.  相似文献   

8.
If G is a connected undirected simple graph on n vertices and n+c-1 edges, then G is called a c-cyclic graph. Specially, G is called a tricyclic graph if c=3. Let Δ(G) be the maximum degree of G. In this paper, we determine the structural characterizations of the c-cyclic graphs, which have the maximum spectral radii (resp. signless Laplacian spectral radii) in the class of c-cyclic graphs on n vertices with fixed maximum degree . Moreover, we prove that the spectral radius of a tricyclic graph G strictly increases with its maximum degree when , and identify the first six largest spectral radii and the corresponding graphs in the class of tricyclic graphs on n vertices.  相似文献   

9.
A Bethe tree Bd,k is a rooted unweighted of k levels in which the root vertex has degree equal to d, the vertices at level j(2?j?k-1) have degree equal to (d+1) and the vertices at level k are the pendant vertices. In this paper, we first derive an explicit formula for the eigenvalues of the adjacency matrix of Bd,k. Moreover, we give the corresponding multiplicities. Next, we derive an explicit formula for the simple nonzero eigenvalues, among them the largest eigenvalue, of the Laplacian matrix of Bd,k. Finally, we obtain upper bounds on the largest eigenvalue of the adjacency matrix and of the Laplacian matrix of any tree T. These upper bounds are given in terms of the largest vertex degree and the radius of T, and they are attained if and only if T is a Bethe tree.  相似文献   

10.
Wilf’s eigenvalue upper bound on the chromatic number is extended to the setting of digraphs. The proof uses a generalization of Brooks’ Theorem to digraph colorings.  相似文献   

11.
In [B.M. Kim, B.C. Song, W. Hwang, Primitive graphs with given exponents and minimum number of edges, Linear Algebra Appl. 420 (2007) 648-662], the minimum number of edges of a simple graph on n vertices with exponent k was determined. In this paper, we completely determine the minimum number, H(n,k), of arcs of primitive non-powerful symmetric loop-free signed digraphs on n vertices with base k, characterize the underlying digraphs which have H(n,k) arcs when k is 2, nearly characterize the case when k is 3 and propose an open problem.  相似文献   

12.
An n×n real matrix is called sign regular if, for each k(1?k?n), all its minors of order k have the same nonstrict sign. The zero entries which can appear in a nonsingular sign regular matrix depend on its signature because the signature can imply that certain entries are necessarily nonzero. The patterns for the required nonzero entries of nonsingular sign regular matrices are analyzed.  相似文献   

13.
Let G=(V(G),E(G)) be a unicyclic simple undirected graph with largest vertex degree Δ. Let Cr be the unique cycle of G. The graph G-E(Cr) is a forest of r rooted trees T1,T2,…,Tr with root vertices v1,v2,…,vr, respectively. Let
  相似文献   

14.
A generalized Bethe tree is a rooted unweighted tree in which vertices at the same level have the same degree. Let B be a generalized Bethe tree. The algebraic connectivity of:
the generalized Bethe tree B,
a tree obtained from the union of B and a tree T isomorphic to a subtree of B such that the root vertex of T is the root vertex of B,
a tree obtained from the union of r generalized Bethe trees joined at their respective root vertices,
a graph obtained from the cycle Cr by attaching B, by its root, to each vertex of the cycle, and
a tree obtained from the path Pr by attaching B, by its root, to each vertex of the path,
is the smallest eigenvalue of a special type of symmetric tridiagonal matrices. In this paper, we first derive a procedure to compute a tight upper bound on the smallest eigenvalue of this special type of matrices. Finally, we apply the procedure to obtain a tight upper bound on the algebraic connectivity of the above mentioned graphs.
  相似文献   

15.
For a positive integer m where 1?m?n, the m-competition index (generalized competition index) of a primitive digraph is the smallest positive integer k such that for every pair of vertices x and y, there exist m distinct vertices v1,v2,…,vm such that there are directed walks of length k from x to vi and from y to vi for 1?i?m. The m-competition index is a generalization of the scrambling index and the exponent of a primitive digraph. In this study, we determine an upper bound on the m-competition index of a primitive digraph using Boolean rank and give examples of primitive Boolean matrices that attain the bound.  相似文献   

16.
For positive integers k and m, and a digraph D, the k-step m-competition graph of D has the same set of vertices as D and an edge between vertices x and y if and only if there are distinct m vertices v1,v2,…,vm in D such that there are directed walks of length k from x to vi and from y to vi for 1?i?m. In this paper, we present the definition of m-competition index for a primitive digraph. The m-competition index of a primitive digraph D is the smallest positive integer k such that is a complete graph. We study m-competition indices of primitive digraphs and provide an upper bound for the m-competition index of a primitive digraph.  相似文献   

17.
We provide positive answers to some open questions presented recently by Kim and Shader on a continuity-like property of the P-vertices of nonsingular matrices whose graph is a path. A criterion for matrices associated with more general trees to have at most n − 1 P-vertices is established. The cases of the cycles and stars are also analyzed. Several algorithms for generating matrices with a given number of P-vertices are proposed.  相似文献   

18.
This paper is an attempt to provide a connection between qualitative matrix theory and linear programming. A linear program is said to be sign-solvable if the set of sign patterns of the optimal solutions is uniquely determined by the sign patterns of A, b, and c. It turns out to be NP-hard to decide whether a given linear program is sign-solvable or not. We then introduce a class of sign-solvable linear programs in terms of totally sign-nonsingular matrices, which can be recognized in polynomial time. For a linear program in this class, we devise an efficient combinatorial algorithm to obtain the sign pattern of an optimal solution from the sign patterns of A, b, and c. The algorithm runs in O(mγ) time, where m is the number of rows of A and γ is the number of all nonzero entries in A, b, and c.  相似文献   

19.
A sign pattern is said to be nilpotent of index k if all real matrices in its qualitative class are nilpotent and their maximum nilpotent index equals k. In this paper, we characterize sign patterns that are nilpotent of a given index k. The maximum number of nonzero entries in such sign patterns of a given order is determined as well as the sign patterns with this maximum number of nonzero entries.  相似文献   

20.
In this paper, we investigate how the algebraic connectivity of a connected graph behaves when the graph is perturbed by separating or grafting an edge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号