首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the hydrothermal synthesis, full characterization, and architectural diversity of three intriguingly bioactive cobalt–organic frameworks, namely, 3D [Co(HL ? )2(BPY)] n ·4nH2O (1), 2D [Co(HL ? )2(BPE)] n (2), and 2D [Co(HL ? )2(DPP)] n (3) coordination polymers, synthesized through a mixed ligand strategy using H 2 L (1-H-indazole-3-carboxylic acid) as a main structural block and the flexible bipyridine and its derivatives (BPY = 4,4′-bipydine, BPE = 1,2-bis(4-pyridyl)ethane, DPP = 1,3-bis(4-pyridyl)propane) as auxiliary ligand sources. Complexes 13 were isolated as air stable and slightly soluble crystalline solids and characterized using elemental analysis, FT-IR, electrochemical technique, thermogravimetric analysis, powder X-ray diffractometer, and single-crystal X-ray crystallography. The bipyridine derivatives played key roles in defining the structural space group and dimensionality feature of the obtained networks. The abundant H-bonding and ππ stacking interactions in complexes 13 gave rise to their intricate metal–organic structures of 3D (1), 2D (2), and 2D (3). In addition, the solutions of complexes 13 showed profound antifungal activities against the selected strain of Colletotrichum musae compared with the controlled group using benomyl as a traditional agrochemical fungicide.  相似文献   

2.
The complexes [Ni(L1)(pyc)2]·2H2O (1) (L1 = C-meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane; Hpyc = pyrazinecarboxylic acid) and [Cu(L2)(H-cpdc)] (2) (L2 = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane; H2-cpdc = cyclopropanedicarboxylic acid) have been synthesized and structurally characterized. The crystal structure of complex 1 shows a distorted octahedral coordination geometry around the nickel(II) center, with four secondary amines in the equatorial positions and two nitrogen atoms of the pyc? ligands in the trans positions. In complex 2, the coordination environment around the copper(II) center is a Jahn–Teller distorted octahedron with four Cu–N bonds and two axial Cu–O bonds. The electronic spectra, electrochemical and TGA behavior of the complexes are significantly affected by the nature of the axial pyc? and H-cpdc? ligands.  相似文献   

3.
A new high-nitrogen complex [Cu(Hbta)2]·4H2O (H2bta = N,N-bis-(1(2)H-tetrazol-5-yl) amine) was synthesized and characterized by elemental analysis, single crystal X-ray diffraction and thermogravimetric analyses. X-ray structural analyses revealed that the crystal was monoclinic, space group P2(1)/c with lattice parameters a = 14.695(3) Å, b = 6.975(2) Å, c = 18.807(3) Å, β = 126.603(1)°, Z = 4, D c = 1.888 g cm?3, and F(000) = 892. The complex exhibits a 3D supermolecular structure which is built up from 1D zigzag chains. The enthalpy change of the reaction of formation for the complex was determined by an RD496–III microcalorimeter at 25 °C with the value of ?47.905 ± 0.021 kJ mol?1. In addition, the thermodynamics of the reaction of formation of the complex was investigated and the fundamental parameters k, E, n, \( \Updelta S_{ \ne }^{{{\uptheta}}} \), \( \Updelta H_{ \ne }^{{{\uptheta}}} \), and \( \Updelta G_{ \ne }^{{{\uptheta}}} \) were obtained. The effects of the complex on the thermal decomposition behaviors of the main component of solid propellant (HMX and RDX) indicated that the complex possessed good performance for HMX and RDX.  相似文献   

4.
Two cis-dioxomolybdenum(VI) complexes [MoO2L] (L: L 1, 2 and L: L 2, 3) in a phenol-based sterically encumbered N2O2 ligand environment have been synthesized, and their crystallographic characterizations are reported. The orange crystals of 2 are monoclinic, space group P21/a with unit cell dimensions as a=16.2407(17) Å, b=7.2857(8) Å, c=18.400(2) Å, β=98.002(9)°, Z=4, and d cal=1.486 g cm?3. The light orange crystals of 3, however, are orthorhombic, space group, Pbcn, with unit cell dimensions a=8.3110(12) Å, b=12.637(3) Å, c=34.673(5) Å, Z=4, and d cal=1.187 g cm?3. The structures were refined by a full-matrix least-squares procedure on F 2 to a final R=0.046 (0.055 for 3) using 4944 (3677) all independent data. In both the cases, the Mo atom exists in a distorted octahedral geometry defined by a N2O4 donor set, which features a cis-Mo(–O)2 and a trans-Mo(OPh)2 arrangement. Compound 2 undergoes a quasireversible one-electron reduction at ?1.3 V vs Ag/AgCl reference due to MoVIO2/MoVO2 electron transfer and thus providing a rare example of steric solution to the comproportionation–dimerization problem encountered frequently in the development of valid biomimetic models for the active sites of oxomolybdenum enzymes.  相似文献   

5.
An approximate analytical solution of the Schrödinger equation is obtained to represent the rotational–vibrational (ro-vibrating) motion of a diatomic molecule. The ro-vibrating energy states arise from a systematical solution of the Schrödinger equation for an empirical potential (EP) V ±(r) = D e {1 ? (?/δ)[coth (ηr)]±1/1 ? (?/δ)}2 are determined by means of a mathematical method so-called the Nikiforov–Uvarov (NU). The effect of the potential parameters on the ro-vibrating energy states is discussed in several values of the vibrational and rotational quantum numbers. Moreover, the validity of the method is tested with previous models called the semiclassical (SC) procedure and the quantum mechanical (QM) method. The obtained results are applied to the molecules H2 and Ar2.  相似文献   

6.
Interaction of two mononuclear tetracoordinate complexes [Co(dmphen)Br2] and [Co(dmphen)I2] (dmphen = 2,9-dimethyl-1,10-phenanthroline), which have been recently reported to behave as single-molecule magnets (SMMs) in an applied external field, with calf thymus (CT) DNA in solution was studied by spectral methods (UV–Vis, fluorescence, and circular dichroism). Results indicate that both complexes along with their chlorido analogue [Co(dmphen)Cl2] are able to bind with the CT DNA via intercalation, with the values of Stern–Volmer constants obtained from the linear quenching plot in range of 1.86 × 104–2.11 × 104 M?1. Furthermore, Topoisomerase I inhibition studies suggest that all three complexes exhibit inhibition activity at concentrations of 45 μM.  相似文献   

7.
8.
B-Nb2O5 was recrystallized from commercially available oxide, and XRD analyses indicated that it is stable in contact with solutions over the pH range 0 to 9, whereas solid polyniobates such as Na8Nb6O19?13H2O(s) appear to predominate at pH>9. Solubilities of the crystalline B-Nb2O5 were determined in five NaClO4 solutions (0.1≤I m /mol?kg?1≤1.0) over a wide pH range at (25.0±0.1)?°C and at 0.1 MPa. A limited number of measurements were also made at I m =6.0 mol?kg?1, whereas at I m =1.0 mol?kg?1 the full range of pH was also covered at (10, 50 and 70)?°C. The pH of these solutions was fixed using either HClO4 (pH≤4) or NaOH (pH≥10) and determined by mass balance, whereas the pH on the molality scale was measured in buffer mixtures of acetic acid?+?acetate (4≤pH≤6), Bis-Tris (pH≈7), Tris (pH≈8) and boric acid?+?borate (pH≈9). Treatment of the solubility results indicated the presence of four species, \(\mathrm{Nb(OH)}_{n}^{5-n}\) (where n=4–7), so that the molal solubility quotients were determined according to:
$0\mathrm{.5Nb}_{2}\mathrm{O}_{5}\mathrm{(cr)+0}\mathrm{.5(2}n-5\mathrm{)H}_{2}\mathrm{O(l)}_{\leftarrow}^{\to}\mathrm{Nb(OH)}_{n}^{5-n}+(n-5)\mathrm{H}^{+}\quad (n=4\mbox{--}7)$
and were fitted empirically as a function of ionic strength and temperature, including the appropriate Debye-Hückel term. A Specific Interaction Theory (SIT) approach was also attempted. The former approach yielded the following values of log?10 K sn (infinite dilution) at 25?°C: ?(7.4±0.2) for n=4; ?(9.1±0.1) for n=5; ?(14.1±0.3) for n=6; and ?(23.9±0.6) for n=7. Given the experimental uncertainties (2σ), it is interesting to note that the effect of ionic strength only exceeded the combined uncertainties significantly in the case of log?10 K s6 to I m =1.0 mol?kg?1, such that these values may be of use by defining their magnitudes in other media. Values of Δ f G o, Δ f H o, S o and \(C_{p}^{\mathrm{o}}\) (298.15 K, 0.1 MPa) for each hydrolysis product were calculated and tabulated.
  相似文献   

9.
A new V6O13-based material has been synthesized via the sol–gel route. This sol–gel mixed oxide has been obtained from an appropriate heat treatment of the chromium-exchanged V2O5 xerogel performed under reducing atmosphere. This new compound, with the chemical formula Cr0.36V6O13.50, exhibits a monoclinic structure (C2/m) with the following unit cell parameters, a=11.89 Å, b=3.68 Å, c=10.14 Å, β=101.18°. The electrochemical characterization of this compound has been performed using galvanostatic discharge–charge experiments in the potential range 4–1.5 V and completed by ac impedance spectroscopy measurements. It exhibits a specific capacity of about 370 mAh g?1, which makes the compound Cr0.36V6O13.50 the best one in the V6O13-based system: 85% of the initial capacity (315 mAh g?1) after the 35th cycle is still available at C/25 without any polarization. From impedance spectroscopy, a high kinetics of Li transport (D Li=1.8×10?9 cm2 s?1) is found at mid-discharge.  相似文献   

10.
The title compound {Cu[S2P(OC2H5)2](bpe)} n (1) is constructed from flexible ligand bpe (bpe = 1,2-bis(4-pyridyl)ethane) and the Cu[S2P(OC2H5)2], which was characterized by single crystal structure determination, elemental analysis, XRD, and IR spectra. X-ray diffraction studies revealed that polymeric compound 1 consists of dinuclear module to form 1-D chains with the intramolecular Cu···Cu interactions (ca. 2.63 Å). This interaction may show a profound influence on the observed blue luminescence emission spectrum for 1. Crystal data for 1 at 293(2) K: Space group P ? 1, a = 9.277(3), b = 10.504 (4), c = 31.801(1) Å, α = 92.849(3), β = 90.401(2), γ = 114.547(7)°, V = 2813.9(2) Å3, Z = 2, R 1 = 0.041.  相似文献   

11.
Thermodynamic activation parameters, enthalpies (ΔH ?), entropies (ΔS ?) and Gibbs energies (ΔG ?) for viscous flow of the systems tert-butanol (TB)+n-butylamine (NBA), TB+di-n-butylamine (DBA) and TB+tri-n-butylamine (TBA) have been calculated from measured density and viscosity data at temperatures ranging from 303.l5 to 323.15 K over the composition range 0 ≤ x 2 ≤ 1, where x 2 is the mole fraction of TB. For all systems, the corresponding excess properties ΔH ?E, ΔS ?E and ΔG ?E have been determined, which are negative in the whole range of composition. The observed negative excess activation properties have been accounted for in terms of dispersive forces and H-bonding. The derived properties are well represented by fourth degree polynomial equations whereas the excess properties could be fitted to third degree Redlich–Kister polynomial equations. Furthermore, the viscosities have been predicted by using the UNIFAC–VISCO model, Grunberg–Nissan model and McAllister three-body interaction model. The UNIFAC–VISCO model and Grunberg–Nissan model do not show good agreement with the experimental data, whereas the McAllister three-body interaction model shows excellent agreement for all three systems, with small average absolute percent deviations (AAD% = 0.6–2.3). The DFT-B3LYP method with the 6-311 G (d, p) basis set has been employed for the optimization of the geometry and calculation of the total energies of the pure compounds and their binary complexes.  相似文献   

12.
A new three-dimensional platinum(II)–thallium(I) coordination polymer [{Pt(pda)(NHCOtBu)2}4Tl4][Pt(CN)4]2·2H 2 O (pda = 1,2-propyldiamine) has been prepared from the direct reaction of [Tl2Pt(CN)4] and [Pt(pda)(NHCOtBu)2] in water, and its structure was characterized by X-ray diffraction analysis. The compound crystallizes in monoclinic, space group Pn, a = 11.567(2) Å, b = 11.570(2) Å, c = 37.677(8)Å, β = 94.64(3)°, V = 5025.8(17) Å3, Z = 2, R1 = 0.0679 and wR2 = 0.1574 [I >  2σ (I)], Goodness-of-fit on F 2 = 1.055. The compound exhibits a novel 3D network structure consisting of [Pt(CN)4]2? connected 1D infinite Pt–Tl–Pt–Tl chains via strong Pt–Tl bonds.  相似文献   

13.
A series of new ruthenium-iron based derivatives [Ru(η5-Cp)(dppf)Cl] (1), [Ru(η5-Cp)(dppf)Br] (2), [Ru(η5-Cp)(dppf)I] (3) and [Ru(η5-Cp)(dppf)N3] (4) were obtained by reactions of [Ru(η5-Cp)(PPh3)2Cl] with 1,1′-bis(diphenylphosphino) ferrocene (dppf) and characterized by IR, NMR (1H, 13C and 31P), 57Fe Mössbauer spectroscopy and cyclic voltammetry. Additionally, the compound (3) was structurally characterized by X-ray crystallography, and the results were as follows: orthorhombic, Pbca, a = 18.2458(10), b = 20.9192(11), c = 34.4138(19) Å, α = β = γ = 90°, V = 13135.3(12) Å3 and Z = 16.  相似文献   

14.
2-Propylamino-5-[4-(2-hydroxy-3,5-dichlorobenzylideneamino) phenyl]-1,3,4-thiadiazole, formulated as C18H16Cl2N4OS (I), was synthesized. The crystal and molecular structure of (I) have been determined by 1H-NMR, IR, and X-ray single crystal diffraction. The compound (I) crystallizes in the monoclinic, space group P2(1)/c with unit cell parameters a = 9.0576(2) Å, b = 24.3382(8) Å, c = 9.0585(2) Å, M r = 407.31, V = 1851.13(9) Å3, Z = 4, R 1 = 0.036, and wR 2 = 0.096. Molecular geometry from X-ray experiment of (I) in the ground state has been compared using the density functional method (B3LYP) with 6-31G(d) basis set. To determine conformational flexibility, molecular energy profile of (I) was obtained by semi-empirical (PM3) calculations with respect to selected degree of torsional freedom, which was varied from ?180° to +180° in steps of 10°. The results are indicative that the Schiff base, which contains a thiadiazole ring, prefers to be in E-configuration. In addition, molecular electrostatic potential, frontier molecular orbitals, and natural bond orbitals analysis were performed by the B3LYP/6-31G(d) method.  相似文献   

15.
Reaction of copper(II) perchlorate with N,N′-{bis(pyridin-2-yl)benzylidene}butane-1,4-diamine (bpbd) yielded monoclinic crystals of bluish green [Cu(bpbd)(ClO4)]ClO4 (1), and a similar reaction in presence of azide anion, N3 ? formed monoclinic crystals of dark green [Cu(bpbd)(N3)]2ClO4 (2). Crystal data for 1: space group P21/c, Z=4, a=17.3968(4) Å, b=9.3182(2) Å, c=17.6794(4) Å, β=102.149(1)°. The geometry around Cu(II) centre is distorted square pyramidal with axial site occupied by O atom of perchlorate and in plane Cu is bonded to four N atoms of the organic ligand. The intermolecular C–H...π stacking in 1 forms a zigzag chain (1D) supramer. Crystal data for 2: space group C2/c, Z=4, a=22.3109(4) Å, b=17.7832(3) Å, c=14.3389(2) Å, β=92.553(1)°. In dinuclear 2, Cu(II) has tetragonally distorted octahedral geometry coordinated by four N atoms of bpbd, with the fifth and sixth positions occupied by N atoms of two end-on bridging azides. The π...π interaction leads to a two dimensional (2D) sheet within which the counter anions are embedded. Both the compounds 1 and 2 show simple paramagnetism. Cyclic voltammetry and fluorescence spectra are also reported.  相似文献   

16.
Thermal analysis on organically modified Ca2+-montmorillonite (OMON) and its source materials—octadecylamine (ODA) and Ca2+-montmorillonite (Ca2+-Mon)—was studied using thermally stimulated current (TSC) technique. The appearance of ρ MON peak with the T max = 75 °C shows the ability of the developed TSC system to demonstrate the relaxation effects of dehydration in Ca2+-Mon. It appeared within the temperature range of DSC endothermic peak (30–100 °C) where the T mMON = 58 °C. Segmental motions of ODA chains and structural disruptions in the modifier agent compound produced TSC α ODA, ρ ODA and ρ 1ODA peaks that are comparable to thermal transition and endothermic peaks in DSC profile (T gODA, T m1ODA and T m2ODA). The effect of localized motion in ODA chains as revealed by the TSC βOMON peak (T max = ?23 °C), however, is absent in the DSC profile of OMON. It shows TSC technique has high sensitivity in detecting various relaxation behaviors at molecular level. More evidences are demonstrated by the ρ OMON (T max = 86 °C) and ρ 1OMON (T max = 105 °C) peak originated from the ODA chains structures. These peaks also confirm the intercalation of the modifier cations inside the Ca2+-Mon gallery.  相似文献   

17.
A simple, semi-empirical, generalized expression was developed for the LDF mass transfer coefficient k as a function of the half cycle time θ c that encompasses and transitions between the well-known regions governed by the long cycle time constant Glueckauf k and the short cycle time dependent k. This new expression can be used to estimate k = f(θ c ) for any system, irrespective of the loading and irrespective of θ c , no matter if k is in the cycle time dependent region or not. A three times wider transition region between the Glueckauf k and the cycle time dependent k was also established, with the Glueckauf LDF limit now valid for θ c  > 0.3 and the short cycle time limit now valid for θ c  < 0.01. When evaluating this region for several adsorbate-adsorbent systems, the minimum Glueckauf θ c spanned three orders of magnitude from thousands of seconds to just a few seconds, indicating a cycle time dependent k is not necessarily limited to what is normally considered a short cycle time. For virtually any θ c less than this minimum Glueckauf θ c , this new first-of-its-kind expression can be used to readily provide an accurate value of k = f(θ c ). Since the widely accepted half cycle time concept does not apply to the actual simulation of a multi-step, unequal step time, pressure swing adsorption process, the value of k = f(θ c ) from this new expression can be based on either the shortest cycle step in the cycle or a different value of k = f(θ c ) for each cycle step time in the cycle, with validity confirmed either by experiment or by process simulation using the exact solution to the pore diffusion equation.  相似文献   

18.
The quantum mechanics of a diatomic molecule in a noncentral potential of the type V (r) = V θ (θ)/r 2 + V r (r) are investigated analytically. The θ-dependent part of the relevant potential is suggested for the first time as a novel angle-dependent (NAD) potential \({V_{\theta}(\theta)=\frac{\hbar^2}{2\mu}\left(\frac{\gamma +\beta \sin^2\theta +\alpha \sin^4 \theta}{\sin^2\theta \cos^2\theta}\right)}\) and the radial part is selected as the Coulomb potential or the harmonic oscillator potential, i.e., V r (r) =  ? H/r or V r (r) = Kr 2, respectively. Exact solutions are obtained in the Schrödinger picture by means of a mathematical method named the Nikiforov–Uvarov (NU). The effect of the angle-dependent part on the solution of the radial part is discussed in several values of the NAD potential’s parameters as well as different values of usual quantum numbers.  相似文献   

19.
This study was designed to examine the interaction of histamine H2-receptor antagonist drug ranitidine (RTN) with human serum albumin by multi-spectroscopic methods. The experimental results showed the involvement of dynamic quenching mechanism which was further confirmed by lifetime spectral studies. The binding constants (K a) at three temperatures (288, 298, and 308 K) were 2.058 ± 0.020, 4.160 ± 0.010 and 6.801 ± 0.011 × 104 dm3 mol?1, respectively, and the number of binding sites (m) were 1.169, respectively; thermodynamic parameters ΔH 0 (44.152 ± 0.047 kJ mol?1), ΔG 0 (?26.214 ± 0.040 kJ mol?1), and ΔS 0 (236.130 ± 0.025 J K?1 mol?1) were calculated. The distance r between donor and acceptor was obtained (r = 3.40 nm) according to the Förster theory of non-radiative energy transfer. Synchronous fluorescence, CD, AFM and 3D fluorescence spectral results revealed the changes in secondary structure of the protein upon interaction with RTN. A molecular modeling study further confirmed the binding mode obtained by the experimental studies.  相似文献   

20.
Reaction of thiosemicarbazones of salicylaldehyde and 2-hydroxyacetophenone (H2L1 and H2L2) with [Ir(PPh3)3Cl] affords complexes of type [Ir(PPh3)2(L)(H)] (L = L1 or L2) in ethanol. A similar reaction carried out in toluene affords the [Ir(PPh3)2(L)(H)] complexes along with complexes of type [Ir(PPh3)2(L)Cl], where a chloride is coordinated to iridium instead of the hydride. The structure of the [Ir(PPh3)2(L2)(H)] and [Ir(PPh3)2(L2)Cl] complexes has been determined by X-ray crystallography. Crystal data for [Ir(PPh3)2(L2)(H)]: space group, P21/c; crystal system, monoclinic; a=12.110(2) Å, b=17.983(4) Å, c=18.437(4) Å, β=103.42(3)°, Z=4; R 1=0.0591, wR 2=0.1107. Crystal data for [Ir(PPh3)2(L2)Cl]: space group, P21/c; crystal system, monoclinic; a=17.9374(11) Å, b=19.2570(10) Å, c=24.9135(16) Å, β=108.145(5)°, Z=4; R 1=0.0463, wR 2=0.0901. In all the complexes the thiosemicarbazones are coordinated to the metal center as dianionic tridentate O, N, S-donors and the two triphenylphosphines are trans. The complexes are diamagnetic (low-spin d? 6, S=0) and show intense MLCT transitions in the visible region. Cyclic voltammetry on all the [Ir(PPh3)2(L)(H)] and [Ir(PPh3)2(L)Cl] complexes shows a quasi-reversible Ir(III)–Ir(IV) oxidation within 0.55–0.78 V vs. SCE followed by an irreversible oxidation of the thiosemicarbazone within 0.91–1.27 V vs. SCE. An irreversible reduction of the thiosemicarbazone is also observed within ?1.10 to ?1.23 V vs. SCE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号